6-6: Function Operations

Mr. Gallo
Algebra 2

Function Operations

Addition	$(f+g)(x)=f(x)+g(x)$
Subtraction	$(f-g)(x)=f(x)-g(x)$
Multiplication	$(f \cdot g)(x)=f(x) \bullet g(x)$
Division	$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}, g(x) \neq 0$

The domains of the sum, difference, product and quotient functions consist of the \boldsymbol{x}-values that are in the domains of both f and g. Also, the domain of the quotient function does not contain any x-value for which $g(x)=0$.

Adding and Subtracting Functions

Let $f(x)=5 x^{3}+1$ and $g(x)=x^{2}-4$.What are $f+g$ and $f-g$? What are their domains?
$(f+g)(x)=f(x)+g(x)=\left(5 x^{3}+1\right)+\left(x^{2}-4\right)=5 x^{3}+x^{2}-3$
$(f-g)(x)=f(x)-g(x)=\left(5 x^{3}+1\right)-\left(x^{2}-4\right)=5 x^{3}-x^{2}+5$

The domains of both functions are all real numbers.
Complete Got It? \#I p. 399
$(f+g)(x)=2 x^{2}+x+5 \quad$ Domain:All Reals
$(f-g)(x)=2 x^{2}-x+11 \quad$ Domain:All Reals

Multiplying and Dividing Functions

Let $f(x)=x^{2}+x-6$ and $g(x)=x-2$. What are $f \cdot g$ and f / g ? What are their domains?

$$
\begin{gathered}
(f \cdot g)(x)=f(x) \cdot g(x)=\left(x^{2}+x-6\right)(x-2)=x^{3}-x^{2}-8 x+12 \\
\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}=\frac{\left(x^{2}+x-6\right)}{(x-2)}=x+3
\end{gathered}
$$

The domain of $(f \cdot g)(x)$ is all real numbers;
The domain of $\left(\frac{f}{g}\right)(x)$ is all real numbers except $x=2$.

Complete Got It? \#2 p. 399

$(f \cdot g)(x)=9 x^{3}-30 x^{2}-23 x-4 \quad$ Domain:All Reals $\left(\frac{f}{g}\right)(x)=x-4 \quad$ Domain:All Reals except $x=-\frac{1}{3}$

Composite Function

- The composite $g \circ f$ of two functions f and g is the function that maps x onto $g(f(x))$, and whose domain is the set of all values in the domain of f for which $f(x)$ is in the domain of g.
${ }^{\circ} g(f(x))$ can also be written as:

$$
g \circ f(x) \quad \text { or } \quad(g \circ f)(x)
$$

- This notation tells the user to apply _X_to the function $f(x)$ and then use the result to apply to the function $\quad g(x)$.

$$
\begin{aligned}
\text { Let } g(x) & =x+1 \text { and } f(x)=x^{2} \text {. Evaluate } g \circ f(3) \text {. } \\
g(f(3)) & =g\left(3^{2}\right) \\
& =9+1 \\
& =10
\end{aligned}
$$

A local car dealer combines two promotions -- they will give you both a 10% discount and a $\$ 1,000$ cash back. Does it matter in what order they do them?
Suppose you pick out a new car with a sticker price of $\$ 20,000$. (Remember that a 10% discount means you're paying 90% of the sticker price)

Rebate first, then Discount

$$
.90(20,000-1000)=17,100
$$

Discount first, then Rebate

$$
.90(20,000)-1000=17,000
$$

Function Notation

We can do this problem by setting up FUNCTIONS:
I. Let $\boldsymbol{x}=$ the sticker price of the car $x=20,000$
2. Let \boldsymbol{r} be the rebate function $r(x)=x-1000$
3. Let \boldsymbol{d} be the discount function $d(x)=.90 x$

Rebate first, then Discount
$d(r(x))=d(x-1000)$
$=.9(x-1000)$
$=.9 x-900$
$.9(20,000)-900=17,100 \quad .90(20,000)-1000=17,000$

Is Function Composition Commutative?

Let $g(x)=\frac{1}{x}$ and $f(x)=2 x-1$.

Find $f(g(5))$
$g(5)=\frac{1}{5}$
$f\left(\frac{1}{5}\right)=2\left(\frac{1}{5}\right)-1=-\frac{3}{5}$
Composition of functions is not commutative. It matters which function you evaluate first.

Homework: p. 402 \#27-45 odd, 56, 58, 69-75 odd, 9098 even

