THE QUADRATIC FORMULA
 SECTION 4-7

Mr. Gallo
Algebra 2

THE QUADRATIC FORMULA

Standard Form: $y=a x^{2}+b x+c$

If $a x^{2}+b x+c=0$ and $a \neq 0$, then:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

When you cannot factor to find the values of x, use the quadratic formula.

Solve the following equations using the Quadratic Formula:

$$
\begin{array}{ll}
3 x^{2}+11 x-4=0 & x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\begin{array}{ll}
a=3 & \\
& \\
x=11 \quad c=-4 & \\
x=\frac{-11 \pm \sqrt{11^{2}-4(3)(-4)}}{2(3)} & \\
x=\frac{-11 \pm \sqrt{169}}{6}=\frac{-11 \pm 13}{6} & x=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(3)(1)}}{2(3)} \\
x=\frac{-11+13}{6}=\frac{2}{6}=\frac{1}{3} & x=\frac{4 \pm \sqrt{16-12}}{6}=\frac{4 \pm 2}{6} \\
x=\frac{4+2}{6}=1 \\
x=\frac{-11-13}{6}=\frac{-24}{6}=-4 & x=\frac{4-2}{6}=\frac{2}{6}=\frac{1}{3}
\end{array}
\end{array}
$$

EXAMPLE

* Accounting for a driver's reaction time, the minimal distance d in feet it takes for a certain car to stop is approximated by the formula

$$
d=.042 s^{2}+1.1 s+4
$$

where s is the speed in miles per hour. If a car took 200 feet to stop, about
how fast was it traveling?
$d=200$

$$
\begin{aligned}
200 & =0.042 s^{2}+1.1 s+4 \\
0 & =0.042 s^{2}+1.1 s-196
\end{aligned}
$$

$$
x=\frac{-1.1 \pm \sqrt{1.1^{2}-4(.042)(-196)}}{2(.042)}
$$

$x=\frac{-1.1+\sqrt{34.19}}{0.084}=56.51$

$$
a=0.042 \quad b=1.1 \quad c=-196
$$

$$
x=\frac{-1.1 \pm \sqrt{1.21+32.98}}{0.084}=\frac{-1.1 \pm \sqrt{34.19}}{0.084}
$$

The car was traveling about 57 mph .

"Uh, yeah, Homework Help Line? I need to have you explain the Quadratic Equation in roughly the amount of time it takes to get a cup of coffee."

HOMEWORK: P. 245 \#11-23 ODD, 41-57 ODD

THE QUADRATIC FORMULA

x If $a x^{2}+b x+c=0$ and $a \neq 0$, then

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

x Discriminant:

+ Solutions to quadratic (and other) equations are sometimes called \qquad Roots \qquad .
$+b^{2}-4 a c$ is called the Discriminant of the quadratic equation. It determines the number of
\qquad solutions to the equation.

THE DISCRIMINANT

Graph $15 x^{2}+2 x-1=0$
$a=15 \quad b=2 \quad c=-1$
$b^{2}-4 a c=2^{2}-4(15)(-1)$
$=4+60$
$=64$

Value of $b^{2}-4 a c$	Number of Real root(s)	Nature of Related Graph?
>0	2 Real Roots	Touches x-axis at two points

THE DISCRIMINANT

Graph $16 x^{2}-72 x+81=0$
$a=16 \quad b=-72 \quad c=81$
$b^{2}-4 a c=(-72)^{2}-4(16)(81)$
$=5184-5184$
$=0$

Value of $b^{2}-4 a c$	Number of Real root(s)	Nature of Related Graph?
$=0$	1 Real Root at $x=-\frac{b}{2 a}$	Touches x-axis at one point The Vertex.

THE DISCRIMINANT

$$
\begin{aligned}
& \text { Graph } 3 x^{2}+3 x+8=0 \\
& a=3 \quad b=3 \quad c=8 \\
& \begin{aligned}
b^{2}-4 a c & =3^{2}-4(3)(8) \\
& =9-96 \\
& =-87
\end{aligned}
\end{aligned}
$$

Value of $b^{2}-4 a c$	Number of Real root(s)	Nature of Related Graph?
<0	No Real Roots	Never touches the x-axis

EXAMPLE 1:

* Determine the number of real roots of the following equations.

$$
16 x^{2}-72 x+81 \quad x^{2}+7 x+1=0
$$

$$
\begin{aligned}
& a=16 \\
& b=-72 \\
& c=81 \\
& c= \\
& b^{2}-4 a c=(-72)^{2}-4(16)(81) \\
&=0
\end{aligned}
$$

Number of roots:
1 Real Root

$$
\begin{aligned}
& a=1 \\
& b=7 \\
& c=1 \\
& b^{2}-4 a c=7^{2}-4(1)(1) \\
& \quad=45
\end{aligned}
$$

Number of roots: 2 Real Roots

EXAMPLE 2:

x A ball is thrown from a height of 5 feet with a vertical velocity of 40 feet per second. Will this ball ever reach a height of 50 feet? Why or why not?
What is the equation representing this situation?

$$
h=-16 t^{2}+40 t+5
$$

Let $h=50$ and then write the equation in standard form?

$$
50=-16 t^{2}+40 t+5 \quad 0=-16 t^{2}+40 t-45
$$

What is the discriminant?

$$
\begin{aligned}
b^{2}-4 a c & =40^{2}-4(-16)(-45) \\
& =-1280<0 \text { No Real Number Solutions }
\end{aligned}
$$

"Uh, yeah, Homework Help Line? I need to have you explain the Quadratic Equation in roughly the amount of time it takes to get a cup of coffee."

HOMEWORK: P. 245 \#25-37 ODD, 38, 59-65 ODD

