The Mathematics of Finance (Reference Sheet)

Principal $=$ lump sum deposit

Interest Compounded Annually

If a principal P is invested at a fixed annual interest rate r, calculated at the end of each year, then the value of the investment as a function of t years is

$$
A(t)=P(1+r)^{t}
$$

Interest Compounded k Times per Year

If a principal P is invested at a fixed rate r and interest is compounded k times each year, then the value of the investment as a function of t years is

$$
A(t)=P\left(1+\frac{r}{k}\right)^{k t}
$$

Interest Compounded Continuously

If a principal P is invested at a fixed rate r and interest is compounded continuously, then the value of the investment as a function of t years is

$$
A(t)=P e^{r t}
$$

Annual Percentage Yield (APY): the percentage rate, compounded annually, that would result in the same amount of interest as the annual interest rate with the given compounding rate.

$$
A Y=1\left(1+\frac{r}{k}\right)^{k}-1 \quad \text { or } \quad A Y=e^{r}-1
$$

Annuities - Future Value

Annuity: a sequence of equal periodic payments.
Ordinary Annuity: payments at made at the end of each period at the same time the interest is posted.

Future Value: the total value of the investment returned from an annuity.
Future Value $=$ Total of Monthly Payments + Total Interest earned

Future Value of an Annuity

The future value FV of an annuity consisting of n equal periodic payments of R dollars at an interest rate i per compounding period (payment interval, usually monthly) is:

$$
F V=R \frac{(1+i)^{n}-1}{i} ; \quad i=\frac{r}{k} ; \quad \mathrm{n}=\text { TOTAL number of payments, usually } 12 \mathrm{t}
$$

Loans and Mortgages - Present Value

Mortgage: bank loan used to buy a house
Present Value: the net amount of money put into an annuity.

$$
\text { Present Value }=\text { Total Loan }+ \text { Total Interest Paid on the Loan }
$$

Present Value of an Annuity

The present value PV of an annuity consisting of n equal payments of R dollars earning an interest rate I per period (payment interval, usually monthly) is

$$
P V=R \frac{1-(1+i)^{-n}}{i} ; \quad i=\frac{r}{k} ; \quad n=\text { TOTAL number of payments, usually } 12 t
$$

Annual Percentage Rate (APR) = the annual interest rate charged on consumer loans

