Limits

DAY 1

I. Analytical Look at Limits

A.) Given the following function, what happens to $f(x)$ as x gets closer to 3 ?

$$
f(x)=\frac{x^{2}-5 x+6}{x-3}
$$

Solution - GRAPH - ZOOM 4 - or TABLE

B.) Given the following function, what happens to $g(x)$ as x gets closer to 3 ?

$$
\begin{aligned}
& g(x)=x-2 \\
& \text { as } x \rightarrow 3, g(x) \rightarrow 1
\end{aligned}
$$

C.) Given the following function, what happens to $h(x)$ as x gets closer to 3 ?

$$
h(x)= \begin{cases}\frac{x^{2}-5 x+6}{x-3}, & x \neq 3 \\ 7, & x=3\end{cases}
$$

$$
\text { as } x \rightarrow 3, h(x) \rightarrow 1
$$

II. Limit Notation

A.) Two-sided Notation:

$$
\lim _{x \rightarrow a} f(x)=L
$$

Read as "the limit of $f(x)$ as x approaches a is $L . "$
B.) One-sided Notation:

$$
\lim _{x \rightarrow a^{+}} f(x)=L
$$

Read as "the limit of $f(x)$ as x approaches a from the right is L."

$$
\lim _{x \rightarrow a^{-}} f(x)=L
$$

Read as "the limit of $f(x)$ as x approaches a from the left is L."

III. Limit Definition

A.) Def: The function f has a limit L as x approaches c iff:

$$
\lim _{x \rightarrow c} f(x)=L \Leftrightarrow \lim _{x \rightarrow c^{-}} f(x)=\lim _{x \rightarrow c^{+}} f(x)
$$

B.) Visual Representations: 1 .) $f(x)=\frac{x^{2}-1}{x-1}$ at $x=1$

IV. Non-existent Limits

A.) $\lim _{x \rightarrow a} f(x)$ fails to exist when:

1) The right-side limit and left-side limit equal different real numbers.
2) The are infinite oscillations .
3) The limit(s) approach $\pm \infty$
B.) Ex. - Evaluate $\lim _{x \rightarrow 0} \frac{1}{x}$.

$$
\lim _{x \rightarrow 0^{-}} \frac{1}{x}=-\infty
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{1}{x}=\infty
$$

$\therefore \lim _{x \rightarrow 0} \frac{1}{x}$ Does Not Exist.
Although limits approaching infinity do not exist, we must still describe the behavior from both/each side(s)!!!
C.) Examples - Graphically evaluate the following limits and determine whether or not they exist.
1.) $\lim _{x \rightarrow 0} \frac{x}{|x|}$
2.) $\lim _{x \rightarrow 0}\lfloor x\rfloor$
3.) $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$

$$
\lim _{x \rightarrow 0^{-}} \frac{x}{|x|}=-1
$$

$$
\lim _{x \rightarrow 0^{+}} \frac{x}{|x|}=1
$$

$\therefore \lim _{x \rightarrow 0} \frac{x}{|x|}$ Does Not Exist.
2.) $\lim _{x \rightarrow 0}\lfloor x\rfloor$

$\lim _{x \rightarrow 0^{-}}\lfloor x\rfloor=-1$

$$
\lim _{x \rightarrow 0^{+}}\lfloor x\rfloor=0
$$

$\therefore \lim _{x \rightarrow 0}\lfloor x\rfloor$ Does Not Exist.
3.) $\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$

Lets use our calculator
$\begin{array}{ll}\lim _{x \rightarrow 0^{-}} \sin \left(\frac{1}{x}\right)=? \\ \lim _{x \rightarrow 0^{+}} \sin \left(\frac{1}{x}\right)=? & f(x)=\sin \left(\frac{1}{x}\right)\end{array}$
$\therefore \lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)$ Does Not Exist - Infinite Oscillations

