Limits

DAY 1

I. Analytical Look at Limits

A.) Given the following function, what happens to f(x) as x gets closer to 3?

$$f(x) = \frac{x^2 - 5x + 6}{x - 3}$$

Solution - GRAPH - ZOOM 4 - or TABLE

as $x \to 3$, $f(x) \to 1$

B.) Given the following function, what happens to g(x) as x gets closer to 3?

$$g(x) = x - 2$$

as
$$x \to 3$$
, $g(x) \to 1$

C.) Given the following function, what happens to h(x) as x gets closer to 3?

$$h(x) = \begin{cases} \frac{x^2 - 5x + 6}{x - 3}, & x \neq 3\\ 7, & x = 3 \end{cases}$$

as
$$x \rightarrow 3$$
, $h(x) \rightarrow 1$

II. Limit Notation

A.) Two-sided Notation:

$$\lim_{x \to a} f(x) = L$$

Read as "the limit of f(x) as x approaches a is L."

B.) One-sided Notation:

$$\lim_{x \to a^+} f(x) = L$$

Read as "the limit of f(x) as x approaches a from the right is L."

$$\lim_{x \to a^{-}} f(x) = L$$

Read as "the limit of f(x) as x approaches a from the left is L."

III. Limit Definition

A.) Def: The function f has a **limit** L as x approaches c iff:

$$\lim_{x \to c} f(x) = L \Leftrightarrow \lim_{x \to c^{-}} f(x) = \lim_{x \to c^{+}} f(x)$$

IV. Non-existent Limits

- A.) $\lim_{x\to a} f(x)$ fails to exist when:
 - 1) The right-side limit and left-side limit equal different real numbers.
 - 2) The are infinite oscillations.
 - 3) The limit(s) approach $\pm \infty$

B.) Ex. – Evaluate $\lim_{x\to 0} \frac{1}{x}$.

must still describe the behavior from both/each side(s)!!!

- C.) Examples Graphically evaluate the following limits and determine whether or not they exist.
- 1.) $\lim_{x \to 0} \frac{x}{|x|}$ 2.) $\lim_{x \to 0} \lfloor x \rfloor$ 3.) $\lim_{x \to 0} \sin\left(\frac{1}{x}\right)$

$$\lim_{x \to 0^{-}} \frac{x}{|x|} = -1$$

$$\lim_{x \to 0^+} \frac{x}{|x|} = 1$$

 $\therefore \lim_{x \to 0} \frac{x}{|x|} \text{ Does Not Exist.}$

$$2.) \lim_{x \to 0} \lfloor x \rfloor \stackrel{\uparrow}{=}$$

$$\lim_{x \to 0^{-}} \lfloor x \rfloor = -1$$

$$\lim_{x \to 0^+} \lfloor x \rfloor = 0$$

 $\therefore \lim_{x \to 0} \lfloor x \rfloor \text{ Does Not Exist.}$

3.) $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$

Lets use our calculator

$$\lim_{x \to 0^{-}} \sin\left(\frac{1}{x}\right) = ? \qquad f(x) = \sin\left(\frac{1}{x}\right)$$

$$\therefore \lim_{x \to 0} \sin\left(\frac{1}{x}\right)$$
 Does Not Exist - Infinite Oscillations