Notes: DERIVATIVES

Velocity and Other Rates of Change

I. Average Rate of Change

A.) Def.- The average rate of change of $f(x)$ on the interval $[a, b]$ is

$$
\begin{aligned}
& \frac{f(b)-f(a)}{b-a} \\
= & m_{\text {secant }} \text { through }(a, f(a)) \text { and }(b, f(b))
\end{aligned}
$$

B.) Ex.- Find the average rate of change of $f(x)$ on $[2,5]$ for the following functions:
1.) $f(x)=x^{2}$
$m=\frac{f(5)-f(2)}{5-2}$
2.) $f(x)=e^{x-1}$
$m=\frac{e^{4}-e^{1}}{3}$
$m=\frac{25-4}{3}=7$ $m \approx 17.293$
as x changes from 2 to 5 , the y-values increase at an average rate of 7 to 1 .
C.) Def.- The average rate of change of $f(x)$ on the interval $[a, a+h]$ is

$$
\frac{f(a+h)-f(a)}{h}
$$

II. Instantaneous Rate of Change

A.) Def.- The instantaneous rate of change of $f(x)$ at $x=a$ (if it exists) is

$$
\begin{aligned}
& f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h} \\
& \quad=m_{\text {tangent }} \text { to } f(x) \text { at } x=a \\
&=\text { slope of the curve } f(x) \text { at } x=a \\
& \quad=\text { the derivative of } f(x) \text { at } x=a
\end{aligned}
$$

III. Examples

A.) Find the instantaneous rate of change of the following functions at the given x values. Then, give the equation of the tangent line at that point.
1.) $f(x)=x^{2}$, at $x=3$

$$
\begin{array}{ll}
\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h} & =\lim _{h \rightarrow 0} \frac{h^{2}+6 h}{h}=\lim _{h \rightarrow 0} \frac{h(h+6)}{h} \\
=\lim _{h \rightarrow 0} \frac{(3+h)^{2}-3^{2}}{h} & =\lim _{h \rightarrow 0} h+6=6
\end{array}
$$

$=\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}-9}{h}$
Tangent line $-f(3)=3^{2}=9$

$$
y-9=6(x-3)
$$

$$
\text { 2.) } \begin{aligned}
f(x)=\frac{5}{x} \text {, at } x=1 & \lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(\frac{5}{1+h}\right)-\frac{5}{1}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{5-5(1+h)}{(1+h)}}{h} \\
& =\lim _{h \rightarrow 0} \frac{-5 h}{h(1+h)} \quad \begin{array}{l}
\text { Tangent line - } \\
\\
\end{array} \\
& \lim _{h \rightarrow 0} \frac{-5}{(1+0)}=-5
\end{aligned} \quad y-5=-5(x-1) \text { y-5 } \quad .
$$

IV. Normal Line

A.) Def. - The normal line to a curve at a point is the line perpendicular to the tangent line at that point.
B.) Ex. - Find the equation of the normal line to the following graph:

$$
f(x)=9-x^{2}, x=2
$$

$m=\lim _{h \rightarrow 0} \frac{9-(2+h)^{2}-\left(9-2^{2}\right)}{h}$

$$
m=\lim _{h \rightarrow 0} \frac{-4 h+h^{2}}{h}=-4 \quad y-5=\frac{1}{4}(x-2)
$$

V. Free Fall Motion

A.) $s(t)=-16 t^{2}+v_{0} t+s_{0}$ or $s(t)=-4.9 t^{2}+v_{0} t+s_{0}$
B.) A rock is dropped from a cliff 1,024 ' high. Answer the following:
1.) Find the average velocity for the first 3 seconds.

$$
\begin{aligned}
& \Delta s(t)=\frac{s(3)-s(0)}{3-0} \\
& \Delta s(t)=\frac{-16\left(3^{2}\right)-16\left(0^{2}\right)}{3}=-48 \mathrm{ft} / \mathrm{sec}
\end{aligned}
$$

2.) Find the instantaneous velocity at $t=3$ seconds.

$$
\begin{array}{ll}
\lim _{h \rightarrow 0}=\frac{s(3+h)-s(3)}{h} & \lim _{h \rightarrow 0}=\frac{h(-96-16 h)}{h} \\
\lim _{h \rightarrow 0}=\frac{-16(3+h)^{2}+16\left(3^{2}\right)}{h} & \lim _{h \rightarrow 0}=-96-16 h \\
\lim _{h \rightarrow 0}=\frac{-16\left(9+6 h+h^{2}\right)+16(9)}{h} & =-96 \mathrm{ft} / \mathrm{sec} \\
\lim _{h \rightarrow 0}=\frac{-144-96 h-16 h^{2}+144}{h} &
\end{array}
$$

3.) Find the velocity at the instant the rock hits the ground.

$$
\begin{gathered}
-16 t^{2}=1024 \\
t=8 \\
\lim _{h \rightarrow 0}=\frac{-16(8+h)^{2}+16\left(8^{2}\right)}{h} \\
\lim _{h \rightarrow 0}=-256 \mathrm{ft} / \mathrm{sec}
\end{gathered}
$$

VI. Rectilinear Motion

A.) Def: The motion of a particle back and forth (or up and down), along an axis s over a time t.
B.) The displacement of the object over the time interval from t to Δt is

$$
\Delta s=s(t+\Delta t)-s(t)
$$

i.e., the change in position.
C.) The average velocity of the object over the same time interval is

$$
\frac{\Delta s}{\Delta t}=\frac{s(t+\Delta t)-s(t)}{\Delta t}=\frac{\text { displacement }}{\Delta t}
$$

D.) The instantaneous velocity of the object at any time t is

$$
v(t)=\frac{d s}{d t}=s^{\prime}(t)=\lim _{\Delta t \rightarrow 0} \frac{s(t+\Delta t)-s(t)}{\Delta t}
$$

E.) The speed of the object at any time t is

$$
\text { speed }=|v(t)|=\left|\frac{d s}{d t}\right|
$$

F.) The acceleration of the object at any time t is

$$
a(t)=\frac{d v}{d t}=\frac{d^{2} s}{d t^{2}}=v^{\prime}(t)=s^{\prime \prime}(t)
$$

G.) A particle in rectilinear motion is speeding up if the signs of the velocity and the acceleration are the same.
H.) A particle in rectilinear motion is slowing down if the signs of the velocity and the acceleration are the opposite.

VII. Definitions

The derivative of a function $f(x)$ at any point x is
A.) $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$
provided the limit exists!
B.) Alternate Def. $-\quad f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}$
provided the limit exists!

VIII. Calculating Derivatives

A.) Using the formal definition of derivative, calculate the derivative of $f(x)=\sqrt{x+2}$

$$
\begin{array}{ll}
& f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} \\
=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h} & =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h+2}+\sqrt{x+2})} \\
=\lim _{h \rightarrow 0} \frac{\sqrt{x+h+2}-\sqrt{x+2}}{h}\left(\frac{\sqrt{x+h+2}+\sqrt{x+2}}{\sqrt{x+h+2}+\sqrt{x+2}}\right) \\
=\lim _{h \rightarrow 0} \frac{(x+h+2)-(x+2)}{h(\sqrt{x+h+2}+\sqrt{x+2})} & =\lim _{h \rightarrow 0} \frac{1}{(\sqrt{x+h+2}+\sqrt{x+2})} \\
& f^{\prime}(x)=\frac{1}{2 \sqrt{x+2}}, x>-2
\end{array}
$$

B.) Using the alternate definition of derivative, calculate the derivative of $f(x)=\sqrt{x+2}$

$$
\begin{aligned}
& f^{\prime}(x)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \quad=\lim _{x \rightarrow a} \frac{x-a}{(x-a)(\sqrt{x+2}+\sqrt{a+2})} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{x+2}-\sqrt{a+2}}{x-a} \\
& =\lim _{x \rightarrow a} \frac{\sqrt{x+2}-\sqrt{a+2}}{x-a}\left(\frac{\sqrt{x+2}+\sqrt{a+2}}{\sqrt{x+2}+\sqrt{a+2}}\right) \\
& =\lim _{x \rightarrow a} \frac{(x+2)-(a+2)}{(x-a)(\sqrt{x+2}+\sqrt{a+2})} \\
& (x+\sqrt{x+2})
\end{aligned} \quad f^{\prime}(x)=\frac{1}{2 \sqrt{a+2}}, a>-2
$$

C.) Using both definitions, find the derivative of the following:

$$
g(x)=3 x^{2}+x-5
$$

You should get

$$
g^{\prime}(x)=6 x+1
$$

IX. Derivative Notation

A.) The following all represent the derivative

$$
\begin{array}{lll}
y^{\prime} & f^{\prime}(x) & \frac{d f}{d x} \\
\frac{d}{d x} & \frac{d y}{d x} & \frac{d}{d x}[f(x)]
\end{array}
$$

At a point $-\left.y^{\prime}(2) \quad f^{\prime}(2) \quad \frac{d f}{d x}\right|_{x=2}$

X. Differentiability

A.) Def. - If f ' $\left(x_{0}\right)$ exists for all points on $[a, b]$, then $f^{\prime}(x)$ is differentiable at $x=x_{0}$.
B.) In order for the derivative to exist,

$$
\lim _{h \rightarrow 0^{-}} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0^{+}} \frac{f(x+h)-f(x)}{h}
$$

Both must exist and be equal to the same real number!
C.) One-sided derivatives- For any function on a closed interval $[a, b]$
$\lim _{h \rightarrow 0^{+}} \frac{f(a+h)-f(a)}{h}=$ the right-hand derivative at a.
$\lim _{h \rightarrow 0^{-}} \frac{f(b+h)-f(b)}{h}=$ the left-hand derivative at b.
D.) Visual Representation:

RT-hand
Deriv.

XI. Examples

A.) Does $f(x)=|x|$ have a derivative at $x=0$?

$$
f(x)= \begin{cases}-x, x<0 & \text { Right-hand: } \\ x, x \geq 0 & \lim _{h \rightarrow 0^{+}} \frac{(0+h)-(0)}{h}=\end{cases}
$$

Left-hand:

$$
\begin{aligned}
& \text { Lett-hand: } \\
& \lim _{h \rightarrow 0^{-}} \frac{-(0+h)-(-0)}{h}=\quad \lim _{h \rightarrow 0^{+}} \frac{h}{h}=1 \\
& \lim _{h \rightarrow 0^{-}} \frac{-h}{h}=-1
\end{aligned}
$$

$$
f^{\prime}(x)=\left\{\begin{array}{c}
-1, x<0 \\
1, x>0
\end{array}\right.
$$

Since the left-hand and right-hand derivatives equal different values, this function does not have a derivative at $x=0$.
B.) Does the following function have a derivative at $x=1$?
$f(x)=\left\{\begin{array}{cc}3 x^{2}, x<1 & \text { Right-hand: } \\ 6 x-3, x \geq 1 & \lim _{h \rightarrow 0^{+}} \frac{6(1+h)-3-(6(1)-3)}{h}=\end{array}\right.$
Left-hand:

$$
\lim _{h \rightarrow 0^{-}} \frac{3(1+h)^{2}-3(1)^{2}}{h}=\quad \lim _{h \rightarrow 0^{+}} \frac{6+6 h-3-6+3}{h}=
$$

$$
\lim _{h \rightarrow 0^{-}} \frac{3\left(1+2 h+h^{2}\right)-3}{h}=\quad \lim _{h \rightarrow 0^{+}} \frac{6 h}{h}=6
$$

$$
\lim _{h \rightarrow 0^{-}} \frac{6 h+3 h^{2}}{h}=6
$$

Since the left-hand and right-hand derivatives both equal 6 as x approaches 1 , this function does have a derivative at $x=1$.

XII. Graphical Relationships

Since the derivative of f at a point a is the slope of the tangent line to f at a, we can get a good idea of what the graph of the function f 'looks like by estimating the slopes at various points along the graph of f.

Ex. 1 - Given the graph of f below, estimate the graph of f^{\prime}.

$$
y=f^{\prime}(x)
$$

Ex. 2 - Given the graph of f below, estimate the graph of f '.

$$
y=f^{\prime}(x)
$$

Ex. 3 - Given the graph of f below, estimate the graph of f^{\prime}.

