

II. Summation Notation

In summation notation, the sum of the terms of the sequence $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ is denoted Which is read "the sum of a_{n} from $k=1$ to $n " \quad \sum_{k=1}^{n} a_{k}$
The variable k is called the index of summation.
Example 4:

$$
\sum_{k=1}^{5} 2 k=2+4+6+8+10=30
$$

Example 5:

$$
\begin{aligned}
\sum_{k=0}^{12} \cos (k \pi) & =\cos (0)+\cos (\pi)+\cos (2 \pi)+\ldots+\cos (12 \pi) \\
& =1-1+1-1+1+\ldots+-1+1=1
\end{aligned}
$$

\(\left.\begin{array}{l}V. Sums of Arithmetic and Geometric Sequences

Theorem: Sum of a finite Arithmetic Sequence.

Let\left\{a_{1}, a_{2}, ··· a_{n}\right\} be a finite arithmetic sequence with

common difference d . Then the sum of the terms of the

sequence is\end{array}\right\}\)| $S_{n}=\sum_{k=1}^{n} a_{k}=a_{1}+a_{2}+\ldots+a_{n}$ |
| ---: |
| $=n\left(\frac{a_{1}+a_{n}}{2}\right)$ |
| $=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$ |

Example 6: A concert auditorium has 30 rows of seats. The first row contains 50 seats. As you move to the rear of the auditorium, each row has two more seats than the previous one. How many seats are in the auditorium?

$$
\begin{gathered}
a_{1}=50, d=2 \\
S_{30}=\frac{30}{2}[2(50)+(30-1) 2]=2370 \text { seats }
\end{gathered}
$$

Theorem: Sum of a Finite Geometric Sequence.
Let $\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ be a finite geometric sequence with common ratio r (where r is not 0). Then the sum of the terms of the sequence

$$
\begin{aligned}
S_{n}=\sum_{k=1}^{n} a_{k} & =a_{1}+a_{2}+\ldots+a_{n} \\
& =\frac{a_{1}\left(1-r^{n}\right)}{1-r}
\end{aligned}
$$

Example 7: Determine the value of the following partial sum (we say partial, because we are not adding all terms in the infinite sequence)

$$
\begin{gathered}
3+\frac{9}{4}+\frac{27}{16}+\frac{81}{64},+\ldots+3\left(\frac{3}{4}\right)^{9} \\
a_{1}=3, r=\frac{3}{4}, n=10 \\
S_{10}=\frac{3\left[1-\left(\frac{3}{4}\right)^{10}\right]}{1-\frac{3}{4}} \approx 11.324
\end{gathered}
$$

The partial sums are below.

	a_{n}	S_{n}
1	$1 / 2$	$1 / 2=0.5$
2	$1 / 4$	$3 / 4=0.75$
3	$1 / 8$	$7 / 8=0.875$
4	$1 / 16$	$15 / 16=0.9375$
5	$1 / 32$	$31 / 32=0.96875$
6	$1 / 64$	$63 / 64=0.984375$
7	$1 / 128$	$127 / 128=0.9921875$

Note that these numbers seem to approach 1

Taking the limit of the partial sum:

$$
\begin{aligned}
\mathrm{m}: & =\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{1}{2}\left(\frac{1}{2}\right)^{k-1} \\
& =\lim _{n \rightarrow \infty} \frac{\frac{1}{2}\left[1-\left(\frac{1}{2}\right)^{n}\right]}{1-\left(\frac{1}{2}\right)} \\
& =\frac{\frac{1}{2}(1-0)}{1-\frac{1}{2}} \\
& =1
\end{aligned}
$$

Formula for an infinite series.
Theorem: Sum of an Infinite Geometric Series.
A geometric series converges iff $|\mathrm{r}|<1$. If it does converge, then the sum is:

$$
S=\frac{a}{1-r}
$$

Example 8: Calculate the sum of the infinite geometric sequence

$$
\begin{gathered}
3,-3 \cdot \frac{1}{5}, 3 \cdot\left(\frac{1}{5}\right)^{2},-3 \cdot\left(\frac{1}{5}\right)^{3}, \ldots \\
S=\frac{3}{1-\left(-\frac{1}{5}\right)}=\frac{3}{\frac{6}{5}}=\frac{5}{2}
\end{gathered}
$$

Example 9: Convert the following repeating decimals to fraction form.
$0.312=0.312+0.000312+0.000000312+\ldots$ this is a geometric sequence with:

$$
\begin{aligned}
& g_{1}=0.312, r=0.001 \\
& S=\frac{0.312}{1-0.001}=\frac{0.312}{0.999}=\frac{312}{999}=\frac{104}{333}
\end{aligned}
$$

$$
0 . \overline{9}=0.9+0.09+0.009+\ldots
$$

this is a geometric sequence with:

$$
g_{1}=0.9, r=0.1
$$

$$
S=\frac{0.9}{1-0.1}=\frac{0.9}{0.9}=1
$$

