Notes 9.3 - Sequences

I. Sequences

A.) A progression of numbers in a pattern.
1.) FINITE - A set number of terms

$$
2,5,8,11, \ldots 242
$$

2.) INFINITE - Continues forever

$$
1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots
$$

B.) Notation - a_{k} where a is the sequence and k refers to the $k^{\text {th }}$ term.
C.) Explicitly defined sequence- Allows us to substitute k into an equation to find the $k^{\text {th }}$ term.
D.) Recursively defined sequence- Defines each term by using the previous term.
E.) Ex. 1 - Define the following sequence both explicitly and recursively.

$$
4,10,16,22, \ldots
$$

Exp:

$$
\begin{gathered}
a_{k}=\text { first }+\operatorname{diff}(k-1) \\
\begin{array}{c}
a_{k}=4+6(k-1) \\
=-2+6 k
\end{array}
\end{gathered}
$$

Rec:

$$
\begin{aligned}
a_{1} & =4 \\
a_{k} & =a_{k-1}+6 \text { for } k \geq 2
\end{aligned}
$$

II. Types of Sequences

A.) Arithmetic Sequence - any sequence with a common difference between terms.

$$
2,5,8,11, \ldots
$$

B.) Geometric Sequence - any sequence with a common ratio between terms.

$$
1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots
$$

C.) Ex. 2- Define the following sequence both explicitly and recursively.
$a=84,63, \frac{189}{4}, \frac{567}{16}, \ldots$

Exp.
$a_{k}=$ first $\cdot\left(\right.$ ratio $\left.^{(k-1)}\right)$
$a_{k}=84\left(\frac{3}{4}\right)^{k-1}$
$a_{k}=\frac{3}{4}\left(a_{k-1}\right)$ for $k \geq 2$
D.) Constructing a Sequence - Ex. 3 - The third and sixth terms of a sequence are -12 and 48 respectively.
Find an explicit formula for the sequence if it is
1.) arithmetic and 2.) geometric
1.) $--12=a_{1}+2 d \quad-12-2 d=48-5 d$

$$
\begin{aligned}
& 48=a_{1}+5 d \\
& a_{1}=-12-2 d \\
& a_{1}=48-5 d \quad a_{1}=-52 \\
& a_{k}=-52+20(k-1)
\end{aligned}
$$

2.)

Divide the two equations
$-12=a_{1}(\sqrt[3]{-4})^{2}$

$$
\begin{aligned}
-12 & =a_{1} r^{2} \\
-4 & =r^{3}
\end{aligned} \quad a_{1}=-\frac{12}{(\sqrt[3]{-4})^{2}}
$$

$r=\sqrt[3]{-4}$

$$
\begin{aligned}
& a_{k}=-\frac{12}{(\sqrt[3]{-4})^{2}}(\sqrt[3]{-4})^{k-1} \\
& a_{k}=-12(\sqrt[3]{-4})^{k-3}
\end{aligned}
$$

III. Fibonacci Sequence

A.) Summation of successive terms. Can only be defined recursively
B.) Ex. $4-a_{k}=1,1,2,3,5,8,13, \ldots$

$$
\begin{aligned}
& a_{1}=1 \\
& a_{2}=1 \\
& a_{k}=a_{k-2}+a_{k-1} \quad \text { for } k \geq 3
\end{aligned}
$$

