Notes 9.1 - Basic
 Combinatorics

I. Types of Data

1.) Discrete Data - "Countable"; how many?
2.) Continuous Data - "uncountable"; measurements; you can always get a closer approximation.

II. The Multiplication Principle of Counting

Example 1: In how many ways can three students sit in three seats?
$\frac{3}{\text { seat1 }} \cdot \frac{2}{\text { seal2 } 2} \cdot \frac{1}{\text { seat } 3}=6$

How many different ways can 5 friends stand in a line?
$5 \times 4 \times 3 \times 2 \times 1=5!=120$

III. Permutations

A.) n items arranged in an order.
$3!=6$ permutations of 3 -set.
n ! distinguishable permutation of an n-set.
B.) Ex. 1- A typical NJ License plate consist of 3 letters followed by 3 digits. How many possible plates are there if repeats of digits and letters are allowed?
$26 \times 26 \times 26 \times 10 \times 10 \times 10=17,576,000$
C.) Ex. 2- How many possible plates are there if repeats of digits and letters are not allowed?

$$
26 \times 25 \times 24 \times 10 \times 9 \times 8=11,232,000
$$

D). How many 3-digit numbers can be selected in each of the following situations?

If you can use each digit more than once.

$$
9 \cdot 10 \cdot 10=900
$$

If you cannot repeat digits.

$$
9 \cdot 9 \cdot 8=648
$$

note: we started with the second digit, becuase it has less restrictions than the first, since 0 is allowed
E.) Ex. 3 - How many different 6 letter "words" can be formed by the word
1.) "VOLUME"?
2.) "DABBLE"?
$6!=720$
$\frac{6!}{2!}=360$
F.) Ex. 4 - How many different11 letter "words" can be formed by the word "MISSISSIPPI"?

$$
\frac{11!}{4!4!2!}
$$

F.) Distinguishable Permutations- If an n-set contains $n_{1}, n_{2}, \ldots n_{k}$ of a separate kind, then the number of permutations is
$\frac{n!}{n_{1}!n_{2}!\ldots n_{K}!}$

IV. Permutation Counting Formula

A.) The number of permutations of n objects taken r at a time is given by the formula

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}
$$

B.) Ex. 5- Provide an algebraic expression equivalent to

$$
{ }_{n} P_{3} \quad{ }_{n} P_{3}=\frac{n!}{(n-3)!}
$$

$$
{ }_{n} P_{3}=\frac{n(n-1)(n-2)(n-3)(n-4) \ldots}{(n-3)(n-4) \ldots}
$$

$$
{ }_{n} P_{3}=n(n-1)(n-2)
$$

C). Evaluate each of the following without a calculator:

1. ${ }_{8} P_{4}=\frac{8!}{4!}=\frac{8 \cdot 7 \cdot 6 \cdot 5 \cdot 4!}{4!}=8 \cdot 7 \cdot 6 \cdot 5=1680$
2. ${ }_{11} P_{4}=\frac{11!}{7!}=\frac{11 \cdot 10 \cdot 9 \cdot 8 \cdot 7!}{7!}=11 \cdot 10 \cdot 9 \cdot 8=7920$
3. ${ }_{n} P_{2}=n(n-1)=n^{2}-n$

V. Combinations

A.) Use a COMBINATION anytime you are "selecting" or "choosing" an r-set of items from an n-set of items. NOTE: With combinations, order does not matter!!!

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!}=\frac{{ }_{n} P_{r}}{r!}
$$

B.) Ex. 6 - How many different subcommittees of 4 people are possible if they are to be chosen from a group of 10 people?

$$
{ }_{10} C_{4}=\frac{10!}{4!6!}=210
$$

BE CAREFUL!!! Elected officials - Permutations;
Committees- Combinations
C.) Subsets of an n-set :

Ex. 7 - A pizzeria offers a choice of 10 toppings. How many possible pizzas are there if you order 4 toppings?

$$
{ }_{10} C_{4}=\frac{10!}{4!6!}=210
$$

D.) Ex. 8 - How many total possible pizzas are there?

$$
2^{10}=1024
$$

