Notes 7.4 - Systems of Inequalities in Two Variables

I. Half-Planes

Given the inequality $y \leq-2 x+5$, the line $y=-2 x+5$ is the boundary, and the half-plane "below" the boundary is the solution set.

$$
\begin{aligned}
& y \leq-x^{2} \\
& y \geq 3 x-2
\end{aligned}
$$

Ex. 2- Solve the following system of inequalities.
$2 x+y \leq 6$
$2 x+3 y \leq 12$
$x \geq 0$
$y \geq 0$

The vertices for the solution to the system are:
$(0,0),(0,4),(3,0),\left(\frac{3}{2}, 2\right)$
The solution set is the area
 bounded by the lines through these points.

II. Linear Programming

A.) Def. - Given an objective function f_{n} where

$$
f=a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n} .
$$

In two dimensions, the function takes on the form $f=a x+b y$. The solution is called the feasible region and the constraints are a system of inequalities.

Ex. 3-Find the maximum and minimum values of the objective function $f=2 x+9 y$ subject to the following constraints
$y \leq-\frac{2}{5} x+4$
$y \leq-3 x+8$
$x \geq 0$
$y \geq 0$

Ex. 4- Example 7 from the text on page 560
Johnson's Produce is purchasing fertilizer with two nutrients: N (nitrogen) and P (phosphorous). They need at least 180 units of N and 90 units of P. Their supplier has two brands of fertilizer for them to buy. Brand A costs $\$ 10$ a bag and has 4 units of N and 1 unit of P. Brand B costs $\$ 5$ a bag and has 1 unit of each nutrient. Johnson's Produce can pay at most $\$ 800$ for the fertilizer. How many bags of each brand should be purchased to minimize their cost?

Let $x=\#$ of bags of A and $y=\#$ of bags of B
Therefore, our objective function for the COST is

$$
C=10 x+5 y
$$

with constraints of:

$$
\begin{aligned}
& 4 x+y \geq 180 \\
& x+y \geq 90 \\
& 10 x+5 y \leq 800 \\
& x \geq 0, y \geq 0
\end{aligned}
$$

Solution set looks like the following graph

