

I. Definition

A.) Parametric Curve - Graph of ordered pairs (x, y) where $x=f(t)$ and $y=g(t)$.
B.) Parametric Equations- Any equation in the form of $x=f(t)$ and $y=g(t)$. \boldsymbol{t} is called the parameter on an interval I.

Ex. 1-"Old School" - A ball is thrown in the air with an initial velocity of 32 ft . $/ \mathrm{sec}$ from a height of 6 ft . Write an equation to model the height of the ball as a function of time.

$$
\begin{equation*}
h(t)=-16 t^{2}+32 t+6 \tag{1,22}
\end{equation*}
$$

Let's look at the graph

If the ball is thrown directly upward, we can model the position of the ball using two different functions of t.

$$
y=-16 t^{2}+32 t+6 \quad x=2
$$

The horizontal position of the ball is now on a vertical axis, as it is in "real-life". While the graph models its vertical position with respect to time, we can also see the velocity and the acceleration by changing our mode to parametric and our line to -0 (Tracer Mode in $\mathrm{Y}=$)

II. Graphing by Hand

Ex. 2- Graph the following parametric equation by hand.

$$
\begin{aligned}
& x=t^{2}-2 \\
& y=3 t \text { for }-2 \leq t \leq 3
\end{aligned}
$$

Make a table:

t	x	y
-2	2	-6
-1	-1	-3
0	-2	0
1	-1	3
2	2	6
3	7	9

III. Eliminating the Parameter

A.) Ex. 3- Determine the graph to the parametric equation by eliminating the parameter.

$$
\begin{aligned}
& x=2 t+3 \\
& y=t^{2} \quad \text { for }-3 \leq t \leq 3
\end{aligned}
$$

$x=2 t+3 \quad y=\left(\frac{x-3}{2}\right)^{2}$
$t=\frac{x-3}{2}$
$y=\frac{1}{4} x^{2}-\frac{3}{2} x+\frac{9}{4}$
$-3 \leq x \leq 9$
B.) Ex. 4-Determine the graph to the parametric equation by eliminating the parameter.

$$
x=\cos t \quad y=\sin t
$$

$t=\cos ^{-1} x$
$y=\sin \left(\cos ^{-1} x\right) \longleftarrow \quad$ Very unfamiliar and hard to work with!
What if we squared both sides of both equations?
$x^{2}=\cos ^{2} t$
Now, add the equations!
$y^{2}=\sin ^{2} t$
$x^{2}+y^{2}=\cos ^{2} t+\sin ^{2} t$
$x^{2}+y^{2}=1$
The circle centered at the origin with a radius of 1
IV. Lines and Line Segments
A.) Ex. 5- Find the parameterization for the line through the points $(-3,-3)$ and $(5,1)$.

Let $P(x, y)$ be a point on the line through A and B and let O be the origin.

The vector $\overrightarrow{O P}-\overrightarrow{O A}=\overrightarrow{A P}$
is a scalar multiple of the vector $\overrightarrow{O B}-\overrightarrow{O A}=\overrightarrow{A B}$

Ex. 6 - Find the parameterization for the line through the points $A=(3,4)$ and $\mathrm{B}=(6,-3)$.

$$
\begin{aligned}
& \overrightarrow{O P}=\langle x, y\rangle \overrightarrow{O A}=\langle 3,4\rangle \overrightarrow{O B}=\langle 6,-3\rangle \\
& \quad \overrightarrow{O P}-\overrightarrow{O A}=t(\overrightarrow{O B}-\overrightarrow{O A}) \\
& \langle x-3, y-4\rangle=t\langle 3,-7\rangle \\
& x-3=3 t \quad y-4=-7 t \\
& x=3 t+3 \quad y=-7 t+4 \quad-\infty<t<\infty
\end{aligned}
$$

What if we wanted the line segment with endpoints A and B ?

Which values of t produce these endpoints?

$$
\begin{array}{ccc}
3 t+3=3 & 3 t+3=6 & 0 \leq t \leq 1 \\
t=0 & t=1 & 0 \leq t
\end{array}
$$

V. Simulating Motion

Ex. 7-A particle moves along a horizontal line so that the position s (in feet) at any time $t \geq 0$ seconds is given by the function $s(t)=t^{3}-8 t+1$. Estimate the values at which the particle changes direction given $-3 \leq t \leq 3$.

1. Graph it. Place the equation in $X_{1 \mathrm{~T}}$ and choose an arbitrary $Y_{1 \mathrm{~T}}$ value.

$$
\begin{aligned}
& X_{1 T}=T^{3}-8 T+1 \\
& Y_{1 T}=4
\end{aligned}
$$

2. What kind of window do we need?

$$
T:[-3,3] \quad X:[-10,50] \quad Y:[0,6]
$$

3. Trace it.

$$
t= \pm 1.637
$$

Another way: Let $Y_{1 \mathrm{~T}}=T . \quad X_{1 T}=T^{3}-8 T+1$

$$
Y_{1 T}=T
$$

Window:

$$
T:[-3,3] \quad X:[-10,50] \quad Y:[-10,10]
$$

Now we can visually see when the particle changes direction!

VI. Projectile Motion

A.) Not everything is straight vertically or horizontally. Take for example, hitting a baseball. There is both a horizontal and vertical component. The velocity vector is

$$
\boldsymbol{v}=\left\langle v_{0} \cos \theta, v_{0} \sin \theta\right\rangle
$$

The path that the object takes can be modeled by the parametric equations
$x=\left(v_{o} \cos \theta\right) t$

$y=-16 t^{2}+\left(v_{o} \sin \theta\right) t+y_{0}$
B.) Ex. 8-Sally hits a softball 2.5 feet above the plate with an initial speed of 110 feet per second at an angle of 22° with the horizontal. Will the ball clear the 5 ft . fence 250 feet away?
First, determine the equations for the ball:

$$
\begin{aligned}
& X_{T 1}=\left(110 \cos 22^{\circ}\right) t \\
& Y_{T 1}=-16 t^{2}+\left(110 \sin 22^{\circ}\right) t+2.5
\end{aligned}
$$

Now, determine the window

$$
T:[0,5]-T \text { step }: .1 \quad X:[0,280] \quad Y:[0,30]
$$

Now, graph and trace to see if it clears the wall
C.) Determine the equations for the wall:

$$
\begin{aligned}
& X_{T 2}=250 \\
& Y_{T 2}=5
\end{aligned}
$$

Change your MODE to Simultaneous

Now, just graph to see if it clears the wall
D.) General the equation for the wall:

$$
\begin{aligned}
& X_{T 2}=\text { Distance } \\
& Y_{T 2}=\frac{(\text { Wall's height }) \times T}{T \max }
\end{aligned}
$$

VII. Modeling Ferris Wheels

Ex. 9 - A Ferris wheel with a radius of 20 feet makes 1 complete revolution every 10 seconds. The lowest point of the Ferris wheel is 5 feet above the ground. Determine the parametric equations which will model the height of a rider starting in the 3 o'clock position at $t=0$.

- Center the Ferris wheel on the vertical axis such that the center will be at the point $(0,25)$.
- We know, from Chapter 5 that

$$
\begin{aligned}
& x=20 \cos \theta \\
& y=25+20 \sin \theta
\end{aligned}
$$

- But, θ must be in terms of t. Since it takes 10 sec . to complete 1 revolution,

$$
\frac{360^{\circ}}{10 \sec }=\frac{36^{\circ}}{1 \sec }
$$

- Therefore,

$$
\theta=36 T \quad \text { and }
$$

$$
\binom{X_{T 1}=20 \cos (36 t)}{Y_{T 1}=25+20 \sin (36 t)}
$$

