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6.2: DOT PRODUCTS 
OF VECTORS

I. The Dot Product
A. The dot product or inner product of the two vectors 

u and v below is:

Note that this answer is a scalar

B. Properties of the dot product
Let u, v, and w be vectors and let c be a scalar.
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C. Example 1: find each dot product

1. 3, 2 2,4     3 2 2 4 2   

2. 1, 2 3, 5  
   1 3 2 5 3 5 2      

   3. 2 4 3i j i j   

   1 4 2 3 2     

D. Example 2- Use the dot product to find the length 
of v.
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II. Angle Between Vectors
A. Theorem: Angle Between Two Vectors

If theta is the angle between the nonzero vectors u and 
v, then 
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B. Example 3: Find the angle between the vectors u 
and v.

1, 1 , 3,0u v  
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C. Two vectors are Orthogonal (perpendicular) iff

D. Example 4: Prove that vectors u=3i+4j and 
v=4i-3j

0u v 

   3 4 4 3 0u v    

III. Projecting One Vector onto Another
A. The vector projection of vector u onto v is the 

vector determined by dropping a perpendicular 
from the terminal point of u to vector v (see 
below).
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B. Projection of u onto v.
If u and v are nonzero vectors, the projection of u onto v

is
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C. Example 5: Find the vector projection of vector u 
onto vector v. Then write u as the sum of two 
orthogonal vectors, one of which is the projection 
of u onto v.
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