6.2: DOT PRODUCTS OF VECTORS

I. The Dot Product
A. The dot product or inner product of the two vectors u and v below is:

$$
\begin{gathered}
u=\left\langle u_{1}, u_{2}\right\rangle, v=\left\langle v_{1}, v_{2}\right\rangle \\
u \cdot v=u_{1} v_{1}+u_{2} v_{2}
\end{gathered}
$$

Note that this answer is a scalar
B. Properties of the dot product

Let u, v, and w be vectors and let c be a scalar.

$$
\begin{array}{|cc|}
\hline u \cdot v=v \cdot u & u \cdot(v+w)=u \cdot v+u \cdot w \\
u \cdot u=|u|^{2} & (u+w) \cdot v=u \cdot v+w \cdot v \\
0 \cdot v=0 & (c u) \cdot v=u \cdot(c v)=c(u \cdot v) \\
\hline
\end{array}
$$

C. Example 1: find each dot product

1. $\langle 3,2\rangle \cdot\langle-2,4\rangle=3(-2)+2(4)=2$
2. $\langle 1, \sqrt{2}\rangle \cdot\langle-3,-5\rangle$

$$
=1(-3)+\sqrt{2}(-5)=-3-5 \sqrt{2}
$$

3. $(-i-2 j) \cdot(4 i-3 j)$

$$
=-1(4)+-2(-3)=2
$$

D. Example 2- Use the dot product to find the length of v.

$$
\begin{aligned}
& \quad v=\langle-8,15\rangle \\
& |\boldsymbol{v}|=\sqrt{\boldsymbol{v} \cdot \boldsymbol{v}}=\sqrt{\langle-8,15\rangle \cdot\langle-8,15\rangle} \\
& =\sqrt{64+225} \\
& =\sqrt{289} \\
& =17
\end{aligned}
$$

II. Angle Between Vectors

A. Theorem: Angle Between Two Vectors

If theta is the angle between the nonzero vectors u and v, then

$$
\begin{gathered}
\cos \theta=\frac{u \cdot v}{|u||v|} \\
\theta=\cos ^{-1}\left(\frac{u \cdot v}{|u||v|}\right)
\end{gathered}
$$

B. Example 3: Find the angle between the vectors u and v.

$$
\begin{gathered}
u=\langle 1,-1\rangle, v=\langle 3,0\rangle \\
\theta=\cos ^{-1}\left(\frac{\langle 1,-1\rangle \cdot\langle 3,0\rangle}{\sqrt{1^{2}+(-1)^{2}} \sqrt{3^{2}+0^{2}}}\right) \\
\theta=\cos ^{-1} \frac{3}{3 \sqrt{2}}=\cos ^{-1} \frac{\sqrt{2}}{2} \\
\theta=45^{\circ}=\frac{\pi}{4}
\end{gathered}
$$

III. Projecting One Vector onto Another
A. The vector projection of vector u onto v is the vector determined by dropping a perpendicular from the terminal point of u to vector v (see below).

$$
\overrightarrow{P R}=\text { proj}_{v} u
$$

(the vector projection of u onto v)

B. Projection of u onto v.

If u and v are nonzero vectors, the projection of u onto v
is

$$
\operatorname{proj}_{v} u=\left(\frac{u \cdot v}{|v|^{2}}\right) v
$$

