6.2 DOT PRODUCTS OF VECTORS

DAY 2

I. Pulling a Piano

A.) If we pull the piano with a force of \boldsymbol{u}, the effective force in the direction of v is $\operatorname{proj}_{v} \boldsymbol{u}$

B.) Example 6 from the text- Find the effective force required to hold the boy and the sled in place on the hill if the combined weight of the boy and sled is 140 lbs .

$$
F=\langle 0,-140\rangle
$$

$v=\left\langle\cos 45^{\circ}, \sin 45^{\circ}\right\rangle=\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
$\boldsymbol{F}_{1}=\operatorname{proj}_{\boldsymbol{v}} \boldsymbol{F}=\frac{\boldsymbol{F} \cdot \boldsymbol{v}}{|\boldsymbol{v}|^{2}} \boldsymbol{v}$
Magnitude $=70 \sqrt{2} \approx 991 \mathrm{bs}$
$=-70 \sqrt{2}\left\langle\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right\rangle$
$=\langle-70,-70\rangle$

II. Work

A.) If a force \boldsymbol{F} is constant and in the same direction of $\overrightarrow{A B}$, then the work done by \boldsymbol{F} moving from A to B is

$$
w=(|F|)(|\overrightarrow{A B}|)
$$

B.) Ex. - Find the work done by lifting a 200 lb . crate 2 feet off the ground.

$$
\begin{array}{r}
w=|\langle 0,200\rangle||\langle 0,2\rangle| \\
w=(200)(2)=400 \mathrm{ft} .-\mathrm{lbs} .
\end{array}
$$

C.) Work in any direction -

$$
w=\boldsymbol{F r r} \overrightarrow{A B} \quad w=(|F|)(|\overrightarrow{A B}|) \cos \theta
$$

D.) Ex. - Find the work done by a 13 lb . force acting in the direction $<2,1\rangle$ in moving an object from $(0,0)$ to $(4,0)$.
$\boldsymbol{F}=13 \frac{\langle 2,1\rangle}{|\langle 2,1\rangle|}=13\left\langle\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right\rangle=\frac{13}{\sqrt{5}}\langle 2,1\rangle$
$\overrightarrow{A B}=\langle 4,0\rangle$
$w=\frac{13}{\sqrt{5}}\langle 2,1\rangle \cdot\langle 4,0\rangle=\frac{13}{\sqrt{5}}(8)$
$w=\frac{104}{\sqrt{5}} \approx 46.51 \mathrm{ft} .-\mathrm{lbs}$.

