6.1 VECTORS IN THE PLANE - DAY 2 APPLICATIONS

I. Velocity Vectors

A.) Velocity - A vector quantity because it has both magnitude and direction. Speed is the magnitude.
B.) Example 1 - A plane leaves Newark International Airport on a bearing of 295 degrees. If the plane is traveling at a speed of 500 mph , write the plane's velocity in component form.

$$
\begin{aligned}
& B=295^{\circ} \\
& \therefore \theta=360-295+90=155^{\circ} \\
& \mathbf{v}=500\langle\cos 155, \sin 155\rangle \\
& \mathbf{v} \approx\langle-453.154,211.309\rangle
\end{aligned}
$$

C.) Example 2 - The plane in Example 1 is being aided by a 50mph wind with a bearing of 310 degrees. Calculate the resultant compass heading and ground speed of the plane.
$B_{w}=310^{\circ}$
$\mathbf{v}_{w}=50\langle\cos 140, \sin 10\rangle$
$\therefore \theta=360-310+90=140^{\circ}$
$\mathbf{v}_{w} \approx\langle-38.302,32.139\rangle$
$\mathbf{v}_{p}+\mathbf{v}_{w}=$
$\langle-453.154,211.309\rangle+\langle-38.302,32.139\rangle=$
$\langle-491.456,243.448\rangle$
Speed $=|\langle-491.456,243.448\rangle|$
$=\sqrt{(-491.456)^{2}+(243.448)^{2}}$
$\theta=\cos ^{-1}\left(\frac{-491.456}{548.449}\right)$
$\approx 548.449 \mathrm{mph}$

$$
\approx 153.684^{\circ}
$$

$$
B \approx 360-(153.684-90)
$$

$$
\approx 296.352^{\circ}
$$

D.) Example 3 - At what bearing and speed should a pilot head if he wants to fly at 450 mph on a bearing of 300 degrees, but there is a 40 mph coming from the west, heading due east?

$$
\begin{aligned}
& \mathbf{v}_{p}+\mathbf{v}_{w}=450\left\langle\cos \left(150^{\circ}\right), \sin \left(150^{\circ}\right)\right\rangle \\
& \mathbf{v}_{p}=k\langle\cos \theta, \sin \theta\rangle \\
& \mathbf{v}_{w}=\langle 40,0\rangle
\end{aligned}
$$

$$
\langle k \cos \theta, k \sin \theta\rangle+\langle 40,0\rangle=\langle-389.711,225\rangle
$$

$$
k \cos \theta+40=-389.711
$$

$$
k \sin \theta+0=225
$$

$$
B_{p}=360-(152.363-90)
$$

$$
k \sin \theta=225
$$

$$
B_{p} \approx 297.637^{\circ}
$$

$k \cos \theta=-429.711$
$\tan \theta=\frac{225}{-429.711}$
$\theta=-27.637+180 \approx 152.363^{\circ}$

$$
\begin{aligned}
& k \sin \left(152.363^{\circ}\right)=225 \\
& k \approx 485.052 \mathrm{mph}
\end{aligned}
$$

II. Gravity

A.) Example 4 - A box on an inclined plane weighs 75 lb , and the plane makes an angle of 40 degrees with the horizontal. What is the force exerted on the plane by the box?

$\mathbf{w}=$ The weight vector
$\mathbf{F}=$ Force \perp to plane
$\mathbf{E}=$ Effective Force to hold in place
$\theta=$ Angle if incline of the ramp, opposite \mathbf{E}

