5-6: The Fundamental Theorem of Algebra

Algebra 2
Mr. Gallo

The Fundamental Theorem of Algebra

If $P(x)$ is a polynomial of degree $n \geq 1$, then $P(x)=0$ has exactly n roots, including multiple and complex roots.

- A polynomial with no constant term has 0 as one of its roots.

$$
f(x)=3 x^{3}+x^{2}-5 x \quad \text { Has GCF of } x \text {, therefore } x=0
$$

- A polynomial with odd degree and real coefficients must have a root in the set of real numbers (rational or irrational) Graph an example
- A polynomial with an even degree doesn't have to cross the x-axis.

Graph an example

- A polynomial with an odd degree must cross the x-axis.

Graph an example
-

What are the zeroes of $f(x)=x^{4}+2 x^{3}-4 x^{2}-7 x-2$?
Graph the function and find any real roots: $\quad x=-1,2$
Use synthetic division until you have a quadratic function:

$2 \mid 1$	2	-4	-7	-2
	2	8	8	2
1	4	4	1	0

-1	4	4	1
	-1	-3	-1
1	3	1	0

Use the quadratic formula to find the rest of the roots:

$$
x=\frac{-3 \pm \sqrt{9-4}}{2}=\frac{-3 \pm \sqrt{5}}{2}
$$

The four roots are: $\quad x=-1,2, \frac{-3 \pm \sqrt{5}}{2}$
$>$

Homework: p. 322 \#8, 9, I2, I3, I6, I7, 22, 24, 25, 5052,54,58,59

