5-4: DIVIDING POLYNOMIALS

Algebra 2
Mr. Gallo

POLYNOMIAL LONG DIVISION

- Numerical
- Polynomial
$2 2 \longdiv { 7 7 0 }$
$2 x + 1 \longdiv { 6 x ^ { 2 } + 7 x + 2 }$

The remainder for each problem is 0 , so 22 is a factor of 770 and $2 x+1$ is a factor of $6 x^{2}+7 x+2$.

USING POLYNOMLAL LONG DIVISION

Use long division to divide $5 x^{2}+2 x+3$ by $x+1$.

The degree is less than $x+1$ so this is the Remainder

Divide: $\frac{5 x^{2}}{x}=5 x$
Multiply: $5 x(x+1)=5 x^{2}+5 x$
Subtract to get $-3 x$. Bring down 3 .
Divide: $\frac{-3 x}{x}=-3$
Multiply: $-3(x+1)=-3 x-3$
Subtract to get 6 .

The quotient is $5 x-3, R 6 . \quad$ Complete Got It? \#1 p. 304 $3 x-8, \mathrm{R} 0$

DIVISION ALGORITHM FOR POLYNOMIALS

You can divide polynomial $\mathbf{P}(\mathbf{x})$ by polynomial $\mathbf{D}(\mathbf{x})$ to get polynomial quotient $\mathbf{Q}(\mathbf{x})$ and polynomial remainder $\mathbf{R}(\mathbf{x})$. The result is $\mathbf{P}(\mathbf{x})=\mathbf{D}(\mathbf{x}) \mathbf{Q}(\mathbf{x})+\mathbf{R}(\mathbf{x})$.

$$
\begin{aligned}
& D(x) \frac{Q(x)}{)_{P(x)}^{P(}} \\
& \frac{.}{R(x)}
\end{aligned}
$$

If $R(x)=0$, then $P(x)=D(x) Q(x)$ and $D(x)$ and $Q(x)$ are factors of $P(x)$.

To use long division, $\mathrm{P}(\mathrm{x})$ and $\mathrm{D}(\mathrm{x})$ should be in standard form with zero coefficients where appropriate. The process stops when the degree of the remainder, $R(x)$, is less than the degree of the divisor, $\mathrm{D}(\mathrm{x})$.

CHECKING FACTORS

Is $x^{2}+1$ a factor of $3 x^{4}-4 x^{3}+12 x^{2}+5$?

$$
\begin{array}{r}
3 x^{2}-4 x+9 \\
x ^ { 2 } + 0 x + 1 \longdiv { 3 x ^ { 4 } - 4 x ^ { 3 } + 1 2 x ^ { 2 } + 0 x + 5 } \\
\frac{-3 x^{4}+0 x^{3}+3 x^{2}}{-4 x^{3}+9 x^{2}+0 x} \\
-\frac{-4 x^{3}+0 x^{2}-4 x}{9 x^{2}-4 x}+5
\end{array}
$$

The degree is less
than the divisor so
this is the Remainder

$$
-\frac{9 x^{2}+0 x+9}{-4 x-4}
$$

The quotient is: $3 x^{2}-4 x+9, R-4 x-4$
The remainder is not 0 so $x^{2}+1$ is not a factor of $3 x^{4}-4 x^{3}+12 x^{2}+5$

Is $x^{2}-2$ a factor of $P(x)=x^{4}-x^{2}-2$? If it is, write $P(x)$ as a product of two factors.

$$
\begin{array}{r}
x ^ { 2 } + 0 x - 2 \longdiv { x ^ { 4 } + 0 x ^ { 3 } - x ^ { 2 } + 0 x - 2 } \\
\frac{-x^{4}+0 x^{3}-2 x^{2}}{x^{2}+0 x-2} \\
-\frac{x^{2}+0 x-2}{0}
\end{array}
$$

$$
P(x)=\left(x^{2}+1\right)\left(x^{2}-2\right)
$$

HOMEWORK: p. 308 \#9-16, 72-78 even

p. 308 \#9-16, 72-78 even
9. quotient: $x-8$
10. quotient: $3 x-5$
11. quotient: $x^{2}+4+3$, R 5
12. quotient: $2 x^{2}+5 x+2$
13. quotient: $3 x^{2}+3 x+2$
14. quotient: $9 x-12, \mathrm{R}-32$
15. quotient: $x-10, \mathrm{R} 40$
(
72. The real solutions are 0 and 1.
74. $\frac{-3 \pm \sqrt{17}}{2}$
76. $1,-\frac{5}{7}$
78. $3 \pm \sqrt{2}$

都

SYNTHETIC DIVISION

- Can only use synthetic division when you divide a polynomial by " x - a "

๑ Write out ALL coefficients (including zeroes!) of polynomial when in standard form.
© For a divisor, use "a." (Reverse the sign of the number in "x-a.")

EXAAMPLE 1

$$
\left(x^{3}-14 x^{2}+51 x-54\right) \div(x+2)
$$

Final Number in Bottom Row is the Remainder
The quotient is $x^{2}-16 x+83, R-220$

EXAMPLE 2

$$
\left(x^{3}-57 x+56\right) \div(x-7)
$$

$\begin{array}{lllll}7 & 1 & 0 & -57 & 56\end{array}$

	7	49	-56
1	7	-8	0

The quotient is $x^{2}+7 x-8, R 0$

REMANDER THEOREM

- If you divide a polynomial $P(x)$ by $x-a$, then the remainder is $P(a)$.

Reason: $\quad P(x)=D(x) Q(x)+R(x)$

$$
\begin{aligned}
& P(x)=(x-a) Q(x)+R(x) \\
& P(a)=(a-a) Q(a)+R(a) \\
& P(a)=0+R(a) \\
& P(a)=R(a)
\end{aligned}
$$

EXAMPLE 3

- Find $\mathrm{P}(3)$ for $P(x)=x^{5}-2 x^{3}-x^{2}+2$ using synthetic division.

$$
\begin{array}{ccccccc}
3 & 1 & 0 & -2 & -1 & 0 & 2 \\
& & 3 & 9 & 21 & 60 & 180 \\
\hline 1 & 3 & 7 & 20 & 60 & 182
\end{array}
$$

$$
P(3)=182
$$

Complete Got It? \#5 p. $307 \quad P(-4)=0$

HOMEWORK: p. 308 \#21-27odd, 33-39 odd, 71-79 odd

