

FINDING REAL ROOTS BY GRAPHING

Find the real solutions to $2 x^{3}+5=3 x^{2}-2 x$.
\odot Method 1:

- Graph each equation in $\mathbf{Y}=$
- $Y_{1}=2 x^{3}+5$
- $Y_{2}=3 x^{2}-2 x$
- Use the INTERSECT feature to find points of intersection
- Method 2:
- Rewrite the equation as $2 x^{3}-3 x^{2}+2 x+5=0$.
- Graph the related function and use the ZERO feature.

What are the real solutions to $x^{3}+x^{2}=x-1$?

- Method 1
$=Y_{1}=x^{3}+x^{2}$
- $Y_{2}=x-1$
- Use INTERSECTION
- The solution is: -1.84
- Method 2
- $Y_{1}=x^{3}+x^{2}-x+1$
- Use ZERO
- The solution is: - 1.84

Which method seems easier and more reliable? Why?

SPECIAL CASE FACTORING

- Sum of Cubes:

$$
\begin{aligned}
a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right) \quad x^{3}+27 & =(x+3)\left(x^{2}-3 x+9\right) \\
a & =\sqrt[3]{x^{3}}=x \\
b & =\sqrt[3]{27}=3
\end{aligned}
$$

- Difference of Cubes

$$
\begin{gathered}
a^{3}-b^{3}=(a-b)\left(a^{2}+a b+b^{2}\right) \quad x^{3}-27=(x-3)\left(x^{2}+3 x+9\right) \\
a=\sqrt[3]{x^{3}}=x \\
b=\sqrt[3]{27}=3
\end{gathered}
$$

Complete the following: $x^{6}+64=\left(x^{2}+4\right)\left(x^{4}-4 x^{2}+16\right)$

$$
8 x^{6}-125=\left(2 x^{2}-5\right)\left(4 x^{4}+10 x^{2}+25\right)
$$

SOLVING POLYNOMLALS USING FACTORS

- If (x-a) is a factor of a polynomial, then the polynomial $=0$ when $x=a$.
- To solve using factors:

1. Write the equation in the form $\mathrm{P}(\mathrm{x})=0$.
2. Factor $\mathrm{P}(\mathrm{x})$.
3. Use the Zero Product Property to solve.

$4 x^{3}-6 x^{2}=4 x$	$2 x=0 \quad(2 x+1)=0 \quad(x-2)=0$
$4 x^{3}-6 x^{2}-4 x=0$	$x=0 \quad 2 x=-1 \quad x=2$
$2 x\left(2 x^{2}-3 x-2\right)=0$	$x=-\frac{1}{2}$
$2 x(2 x+1)(x-2)=0$	
	The solutions are: $-\frac{1}{2}, 0,2$

What are the solutions of each polynomial equation over the complex numbers?

$$
\begin{array}{rlrl}
2 x^{3} & =-54 & x^{3} & =8 x-2 x^{2} \\
2 x^{3}+54 & =0 & x^{3}+2 x^{2}-8 x & =0 \\
2\left(x^{3}+27\right) & =0 & x\left(x^{2}+2 x-8\right) & =0 \\
x^{3}+27 & =0 & x(x+4)(x-2) & =0 \\
(x+3)\left(x^{2}-3 x+9\right) & =0 & &
\end{array}
$$

The solutions are:

$$
x=-3 \quad x=\frac{3 \pm 3 i \sqrt{3}}{2}
$$

The solutions are:

$$
\begin{array}{rrr}
x=0 & x+4=0 & x-2=0 \\
x=-4 & x=2
\end{array}
$$

What are the solutions of each polynomial equation over the complex numbers?

$$
\begin{aligned}
x^{4}-5 x^{2} & =16 \\
x^{4}-5 x^{2}-16 & =0 \\
a=x^{2} \quad a^{2}-5 a-16 & =0 \\
(a-8)(a+2) & =0 \\
\left(x^{2}-8\right)\left(x^{2}+2\right) & =0
\end{aligned}
$$

$$
2 x^{4}-20 x^{2}+50=0
$$

$$
2\left(x^{4}-10 x^{2}+25\right)=0
$$

$$
x^{4}-10 x^{2}+25=0
$$

$$
a=x^{2} \quad a^{2}-10 a+25=0
$$

$$
(a-5)^{2}=0
$$

The solutions are:

$$
x= \pm 2 \sqrt{2} \quad x= \pm i \sqrt{2}
$$

$$
\left(x^{2}-5\right)^{2}=0
$$

The solutions are: $\quad x=0$

What are three consecutive even integers whose product is 4 times their sum?

$$
x=1^{\text {st }} \text { integer } \quad x+2=2^{\text {nd }} \text { integer } \quad x+4=3^{\text {rd }} \text { integer }
$$

$$
\begin{aligned}
4(x+x+2+x+4) & =x(x+2)(x+4) \\
4 x+4 x+8+4 x+16 & =x\left(x^{2}+6 x+8\right) \\
12 x+24 & =x^{3}+6 x^{2}+8 x \\
0 & =x^{3}+6 x^{2}+8 x-12 x-24 \\
0 & =x^{3}+6 x^{2}-4 x-24
\end{aligned}
$$

The zeros are: $-6,-2,2$

The answers are: 2, 4, 6 and $-2,-4,-6$

Homework: p. 301 \#11-37 odd

