

4-8: SOLVING PROBLEMS WITH TRIG
I. BASIC RIGHT TRIANGLE TRIG

Angle of Depression
Angle of Elevation

II. Examples

A.) For a laser light show at an amusement park, the laser beam directed from the top of a $30-\mathrm{ft}$. building is to reflect from an object that is 100 ft . away from a point directly below the location of the laser. What is the angle of depression from the laser to the reflecting object?

B.) A surveyor observes that the top of a building makes an angle of 37.2° with the road. From another location 400 ft . away the angle of elevation is 20°. How far is the base of the building from the first observation point on the road?

$$
\begin{array}{ll}
\tan 37.2=\frac{y}{x} & \tan 20=\frac{y}{x+400} \\
y=x \tan 37.2 & y=(x+400) \tan 20
\end{array}
$$

$x \tan 37.2=(x+400) \tan 20$
$x \tan 37.2=x \tan 20+400 \tan 20$
$x \tan 37.2-x \tan 20=400 \tan 20$
$x(\tan 37.2-\tan 20)=400 \tan 20$
$x=\frac{400 \tan 20}{\tan 37.2-\tan 20} \approx 368.511^{\prime}$

II. SIMPLE HARMONIC MOTION

-A point moving on a number line is in simple harmonic motion if its directed distance d from the origin is given by

$$
d=a \sin \omega t \text { or } d=a \cos \omega t
$$

Where a and ω are real numbers and $\omega>0$.
The motion has a frequency of $\frac{\omega}{2 \pi}$, which is the number of oscillations per unit of time.
-A piston is an example of simple harmonic motion. A linkage converts the rotary motion of a motor to the back-and-forth motion of the piston.
(Fig. 4.94 on page 429 of your text.)
http://www.freestudy.co.uk/dynamics/velaccdiag.pdf

Ex. - In a certain mechanical linkage similar to the one in figure 4.94, a wheel with a 10 cm radius turns with an angular velocity of 6π radians per second.
A.) What is the frequency of the piston? $f=\frac{\omega}{2 \pi}=\frac{6 \pi}{2 \pi}=3$
B.) What is the distance the piston is from its starting point exactly 5.3 seconds after starting?

$$
\begin{aligned}
& d(0)=10 \cos (6 \pi(0))=10 \\
& d(5.3)=10 \cos (6 \pi(5.3)) \approx 8.090 \\
& \text { distance from start } \approx 10-8.090 \approx 1.91 \mathrm{~cm}
\end{aligned}
$$

Ex.- A mass oscillating up and down on the end of a spring can be modeled as harmonic motion. If the weight is displaced a maximum of 8 cm , find the modeling equation if it takes 3 seconds to complete the cycle.
1.) Our choice of models sin or cos. Let's choose the one that starts at a maximum displacement.
2.) Find a. $\quad a=8 \quad d=8 \cos \left(\frac{2 \pi}{3} t\right)$
3.) Find $\omega \cdot \quad 3=\frac{2 \pi}{\omega} \quad \therefore \omega=\frac{2 \pi}{3}$

