

4-4: GRAPHS OF SINE AND COSINE: SINUSOIDS

I. SINE AND COSINE GRAPHS
-In radian mode

II. SINUSOIDS AND TRANSFORMATIONS

Def- Any function $\quad f(x)=a \sin (b x+c)+d$
or $\quad f(x)=a \cos (b x+c)+d$
where a, b, c, and d are constants and $b \neq 0$

Vocabulary associated with sinusoids include AMPLITUDE, PERIOD, FREQUENCY, and PHASE SHIFT

III. AMPLITUDE OF A SINUSOID

One half the height of the wave of a sinusoid. The amplitude of any sinusoid is $|a|$.

Ex.- Find the amplitude and describe the transformation for each of the following sinusoids.
A.) $y=2 \sin x$
B.) $y=-\frac{1}{3} \cos x$
$a=2$
-Vertical stretch by a factor of 2
$a=\frac{1}{3}$
-Reflect over the x-axis
-Vertical shrink by a
factor of $\frac{1}{3}$

IV. PERIOD OF A SINUSOID

The length of gne full cycle of the graph of a sinusoid.
The period $=\frac{2 \pi}{|b|}$
Ex.- Find the period of each sinusoid and describe the transformations.
A.) $y=-2 \cos \left(-\frac{x}{4}\right)$
B.) $y=\frac{1}{2} \sin (3 x)$

$$
\mathrm{pd}=\frac{2 \pi}{\left|-\frac{1}{4}\right|}=8 \pi
$$

$$
\mathrm{pd}=\frac{2 \pi}{|3|}=\frac{2 \pi}{3}
$$

- Reflect over the x and y-axes.
-Vertical stretch by a factor of 2 .
-Vertical shrink by a factor of $\frac{1}{2}$
-Horizontal stretch by a factor of 4 .
-Horizontal shrink by a factor
of $\frac{1}{3}$.

V. FREQUENCY OF A SINUSOID

The number of complete cycles the sinusoid wave completes in a unit interval.
The frequency $=\frac{|b|}{2 \pi}$

Ex.- Find the frequency of the following function and interpret its meaning graphically.

$$
y=2 \cos \left(\frac{2 x}{5}\right) \quad \mathrm{fq}=\frac{\left|\frac{2}{5}\right|}{2 \pi}=\frac{2}{10 \pi}=\frac{1}{5 \pi}
$$

The graph completes 1 full cycle per interval length of 5π.

VI. PHASE SHIFTS OF A SINUSOID

The equivalence of a horizontal translation. The phase shift is represented by c.

Ex- Write the sine function as a phase shift of the cosine function.

$$
\sin x=\cos \left(x-\frac{\pi}{2}\right) \text { or } \cos \left(x+\frac{3 \pi}{2}\right)
$$

