NOTES 3.6 - MATHEMATICS OF FINANCE

I. SIMPLE INTEREST

$$
\begin{gathered}
I=P r t \\
A=P(1+r t)
\end{gathered}
$$

Where $P=$ Principal, $r=$ rate, $t=$ time in years, and $A=$ total amount

II. COMPOUND INTEREST

$$
A=P\left(1+\frac{r}{k}\right)^{k t}
$$

Where $P=$ Principal, $r=$ rate, $t=$ time in years, $k=\#$ of times compounded per year and $A=$ total amount

III. EXAMPLES

A.) SPSE you invest $\$ 1,000.00$ at 6% compounded monthly. How much will your investment be worth in 5 years?
$A=1000\left(1+\frac{.06}{12}\right)^{12(5)}=\$ 1,348.85$
B.) SPSE you invest $\$ 500.00$ at 10% compounded daily. How long will it take to reach $\$ 2,000.00$?

$$
\begin{aligned}
& 2000=500\left(1+\frac{.1}{365}\right)^{365 t} \\
& 4=\left(1+\frac{.1}{365}\right)^{355 t} \\
& 4=1.000273973^{365 t} \\
& \ln 4=\ln 1.000273973^{365 t} \\
& t \approx 13.864 \mathrm{yrs}
\end{aligned}
$$

C.) What rate will guarantee doubling your money in ten years if it is to compounded quarterly?

$$
\begin{aligned}
& 2=1\left(1+\frac{r}{4}\right)^{4(10)} \\
& 2=\left(1+\frac{r}{4}\right)^{40} \quad r=.0699187 \approx 7 \%
\end{aligned}
$$

$1.017479692=1+\frac{r}{4}$
$.017479692=\frac{r}{4}$

IV. COMPOUNDING CONTINUOUSLY

$$
A=P e^{r t}
$$

A.) How much would your investment at the end of 10 years if you deposit $\$ 10,000.00$ in a certificate of deposit compounded continuously at 7.5% interest?

$$
A=10000 e^{.075(10)}
$$

$$
A=\$ 21,170.00
$$

Y. ANNUAL PERCENTAGE YIELD

Basis for comparing investments

Amount of interest \$1 earns in 1 year.

$$
A P Y=\left(1+\frac{r}{k}\right)^{k}-1
$$

Which is more attractive; 9.75% compounded quarterly or 9.7% compounded monthly?

$$
A Y_{1}=\left(1+\frac{.0975}{4}\right)^{4}-1 \quad A Y_{2}=\left(1+\frac{.097}{12}\right)^{12}-1
$$

$$
A Y_{1}=.101123 \quad A Y_{2}=.1014308
$$

YI. ANNUITIES-FUTURE VALUE

A sequence of equal periodic payments ordinarily made at the end of each period, the same time the interest is being deposited

Ex: SPSE you put $\$ 200$ into a retirement fund which

 pays 10% compounded quarterly. How much will be in the account at the end of 1 year?$$
\begin{aligned}
Q_{1} & =200 \\
Q_{2} & =200+200(1.025) \\
Q_{3} & =200+200(1.025)+200(1.025)^{2} \\
Q_{4} & =200+200(1.025)+200(1.025)^{2}+200(1.025)^{3} \\
Q_{4} & =\$ 830.50
\end{aligned}
$$

The Future Value of an Annuity consisting of n equal periodic payments of R dollars at an interest rate i per compounding period can be given by the equation

$$
F V=R \frac{(1+i)^{n}-1}{i}
$$

Ex. - What is the future value of an annuity that consist of \$200 monthly contributions earning 10% annual interest after 20 years?

$$
F V=200 \frac{\left(1+\frac{.1}{12}\right)^{20(12)}-1}{\frac{.1}{12}}=\$ 151,873.76
$$

YH. LOANS AND MORTGAGES

$$
P V=R\left(\frac{1-(1+i)^{-n}}{i}\right)
$$

Is the Present Value of an annuity of n equal payments of R dollars earning an interest rate I per period.

Ex. - Joe purchases a new truck for $\$ 28,000$ using a $\$ 2,000$ down payment and making out a 5 -year loan at 2.9% interest. What are the monthly payments?

$$
26000=R\left(\frac{1-\left(1+\frac{.029}{12}\right)^{-60}}{\frac{.029}{12}}\right)
$$

$$
26000=55.79022549 R
$$

$$
R=\$ 466.04
$$

