
I. Constant Percentage Rate and Exponential Functions.
A. Exponential Population Model:

1. If a population P is changing at a constant percentage rate r each year, then

$$
P(t)=P_{0}(1+r)^{t}
$$

where P_{0} is the initial population, r is the growth rate (decimal), and t is time.
$r>0 \rightarrow$ exponential growth
$r<0 \rightarrow$ exponential decay
B. Example 1: finding growth and decay rates
a. $P(t)=32,459 \cdot 0.9845^{t} \quad$ decay, since $1+r<1$
$r=-0.0155$
decay rate is 1.55%
growth, since $1+r>1$
b. $P(t)=890,234 \cdot 1.0239^{t} \quad r=0.0239$
growth rate is 2.39%
C. Example 2: Find the exponential function with the initial value of 28 , and decaying at a rate of 4.5%.

$$
f(x)=28(1-0.045)^{x}=28(0.955)^{x}
$$

II. Exponential Growth and Decay Models
A. Doubling Time

$$
f(t)=a \cdot 2^{\frac{t}{d}}=a(\sqrt[d]{2})^{t}
$$

Where $f(t)$ is the population/amount, a is the initial amount, t is the time, and d is the doubling time.
B. Half-Life

$$
f(t)=a \cdot\left(\frac{1}{2}\right)^{\frac{t}{h}}=a\left(\sqrt[h]{\frac{1}{2}}\right)^{t}
$$

Where $f(t)$ is the population/amount, a is the initial amount, t is the time, and h is the half-life.
C. Example 3: Radioactive iodine is used in various medical diagnostic tests. Its half-life is 8 days.

1. Write a formula for $f(t)$-the amount of iodine-in terms of the number of days.

$$
f(t)=a\left(\frac{1}{2}\right)^{\frac{t}{8}}
$$

2. What proportion of the original radioactive iodine is present after 48 days?

$$
f(48)=a \cdot\left(\frac{1}{2}\right)^{\frac{48}{8}}=a \cdot\left(\frac{1}{2}\right)^{6}=\frac{1}{64} a
$$

3. If there is initially 12 mL of iodine present, after how many days will there be less than 1 mL ? (solve graphically)

$t \approx 28.68 \mathrm{days}$

D. Example 4: suppose that a colony of bacteria exhibits exponential growth. The colony initially contains 5000 bacteria, and takes 4 hours to double.

Write a function for $P(t)$-the population of bacteria-as a function of time.

$$
P(t)=5000(2)^{\frac{t}{4}}
$$

2. How many bacteria are there after 10 hours?

$$
P(10)=5000(2)^{\frac{10}{4}} \approx 28,284
$$

How long will it take until the colony contains 160,000 bacteria?
Algebraically:
$5000 \cdot 2^{\frac{t}{4}}=160,000$
$2^{\frac{t}{4}}=32$
$2^{\frac{t}{4}}=2^{5}$
$\therefore \frac{t}{4}=5$
$t=20$ hours
III. Using Regression to Model Population
A. Example 5: The world population is given in the table to the right.

Find an exponential model for the data (in years after 1900)

$$
P(t) \approx 1300.7007(1.0149)^{t}
$$

2. Is this a reasonable model?

$$
\text { yes, } r^{2} \approx 0.9804 \approx 1
$$

3.

Predict the population in 2010
$P(110) \approx 6,629,000,000$ people

Year	Population (millions)
1950	2,555
1960	3,039
1970	3,707
1980	4,456
1990	5,283
2000	6,080
2010	$6,823^{*}$
2020	$7,518^{*}$
2030	$8,140^{*}$
*projections	

B. Example 6: The world population is given in the table to the right.
Find a logistic model for this population data. Use years after 1900 for t .

$$
P(t)=\frac{10929.493}{1+14.364 e^{-0.029 t}}
$$

2. Use your model to predict the population in the year 2050
$P(150) \approx 9175$ million people
3. Use this model to predict the maximum sustainable population for the world.
$\lim _{t \rightarrow \infty} P(t)=10,929,493,000$

Year	Population (millions)
1950	2,555
1960	3,039
1970	3,707
1980	4,456
1990	5,283
2000	6,080
2010	$6,823^{*}$
2020	$7,518^{*}$
2030	$8,140^{*}$
${ }^{*}$ projections	

C. Example 8: Find the logistic model with the following characteristics:

Initial value of $16 \quad f(0)=16$
2. Maximum capacity of $80 C=80$
3. Passing through the point $(2,40) f(2)=40$

$$
\begin{aligned}
f(t) & =\frac{c}{1+a b^{x}} \\
f(t) & =\frac{80}{1+a b^{x}}
\end{aligned}
$$

$$
\begin{array}{cc}
f(0)=16=\frac{80}{1+a b^{0}} & f(2)=40=\frac{80}{1+4 b^{2}} \\
16=\frac{80}{1+a} & 1+4 b^{2}=\frac{80}{40} \\
1+a=\frac{80}{16} & 4 b^{2}=1 \\
a=4 & b=\frac{1}{2} \\
& f(t)=\frac{80}{1+4(0.5)^{t}}
\end{array}
$$

