NOTES 3.1 - EXPONENTIALAND LOGISTIC FUNCTIONS

I. DEFINITION:

Let a and b be real numbers. An EXPONENTIAL FUNCTION in x is a function with that can be written in the form

$$
\begin{aligned}
f(x)= & a b^{x}, \text { where } a \neq 0 \text { and } b \text { is a positive } \\
& \text { number not equal to } 1 . a \text { is the initial } \\
& \text { value and } b \text { is the base. }
\end{aligned}
$$

II. $f(x)=a b^{x}$

* If... then...

$$
\begin{array}{ll}
x=0 & f(x)=a \\
x=\frac{m}{n} & f(x)=a b^{\frac{m}{n}}=a(\sqrt[n]{b})^{m}=a\left(\sqrt[n]{b^{m}}\right) \\
x=-m & f(x)=a b^{-m}=\frac{a}{b^{m}} \\
x=-\frac{m}{n} & f(x)=a b^{-\frac{m}{n}}=\frac{a}{(\sqrt[n]{b})^{m}}=\frac{a}{\left(\sqrt[n]{b^{m}}\right)}
\end{array}
$$

III. GRAPH OF $f(x)=a b^{x}$

Def: if $a>0$ and $b>1$ the $f(x)$ is increasing and is an exponential growth function with b as the growth factor.

Def: if $a>0$ and $b<1$ the $f(x)$ is decreasing and is an exponential decay function with b as the decay factor.

IV. RECURSIVE FUNCTIONS

Def: Any function which defines each term using the previous term.
Exponential functions are recursive.

$$
\begin{aligned}
& \text { if } f(x)=a b^{x} \\
& f(x+1)=b \cdot f(x) \\
& f(x+2)=b \cdot f(x+1) \\
& f(x+3)=b \cdot f(x+2)
\end{aligned}
$$

Y. GRAPHICAL TRANSFORMATIONS

Describe how to transform $f(x)=2^{x}$ into each of the following functions.
$\begin{array}{ll}\text { 1.) } g(x)=2^{x+1} & \text { 2.) } g(x)=-3 \cdot 2^{2-x}\end{array}$
-Trans. 1 unit left Refl. over the x
Refl. over the y
Vert. stretch by a factor of 3

- Trans. right 2

YI. THE NATURAL BASE E

Def:

$$
\begin{aligned}
& e=\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{x} \approx 2.71826 \ldots \\
& f(x)=e^{x} \text { and } g(x)=\ln x \\
& \text { are inverse functions }
\end{aligned}
$$

VII. GRAPHS OF $f(x)=e^{x}$

$f(x)=e^{k x}$

VIII. LOGISTIC FUNCTIONS

Def: Let a, b, c, and k be positive constants with $b<1$.
A LOGISTIC GROWTH FUNCTION in x is a
function that can be written in the form

$$
f(x)=\frac{c}{1+a \cdot b^{x}} \text { or } f(x)=\frac{c}{1+a \cdot e^{-k x}}
$$

where the constant c is the limit to the growth.

If $b>1$ or $k<0$, it is a logistic decay function.

IX. GRAPHING LOGISTIC FUNCTIONS

$f(x)=\frac{1}{1+e^{-x}}$

Graph	H.A.: $y=0 ; y=8$
$f(x)=\frac{8}{1+3 \cdot 0.7^{x}}$	y-int $:(0,2)$

X. POPULATION MODELS

Exponential model: $P(t)=P_{0} b^{t}$

Logistic Model - $P(t)=\frac{c}{1+P_{0} \cdot b^{t}}$

Given the population of San Jose in 1990 was 782,248 and in 2000 it was 894,943 , determine an exponential model for the population of San Jose and predict San Jose's population in 2010.
1.) Find the growth factor.
$b=\sqrt[10]{\frac{894,743}{782,248}}=1.0135$
2.) Determine the model.

$$
P(t)=782,248\left(1.0135^{t}\right)
$$

3.) Substitute 20 in the model to determine the population in 2010.

$$
P(20)=782,248\left(1.0135^{20}\right)=1,022,867
$$

Example: Suppose that a long-lasting epidemic spreads through a town with a population of 100,000 according to the logistic function below:

$$
N(t)=\frac{100,000}{1+5000 e^{-t}}
$$

Where $N(t)$ is the number of infected individuals, and t is the number of days after the initial infection.
How much of the population will be infected after 5 days?

$$
N(5) \approx 2,883 \text { people }
$$

After how many days will half of the townspeople be infected? (solve graphically)

8.5days

