2-7: Solving Equations in one Variable

I. Solving Rational Equations
A. Equations involving rational expressions or fractions are rational equations.

$$
\frac{f(x)}{g(x)}=0
$$

B. When we multiply or divide an equation by an expression containing variables, we may have solutions that are not solutions of the original equation. These are called extraneous solutions.

C. Solve each of the following:

Example $1 \quad \frac{x-4}{4}+\frac{x}{3}=6$

$$
\begin{gathered}
12\left(\frac{x-4}{4}+\frac{x}{3}\right)=12(6) \\
3(x-4)+4(x)=72 \\
3 x-12+4 x=72 \\
x=12
\end{gathered}
$$

Example $2 \quad \frac{3}{2 x}-\frac{2 x}{x+1}=-2 \quad$ note: $x \neq 0,-1$

$$
\begin{gathered}
(2 x)(x+1)\left(\frac{3}{2 x}-\frac{2 x}{x+1}\right)=-2(2 x)(x+1) \\
3(x+1)-2 x(2 x)=-4 x^{2}-4 x \\
3 x+3-4 x^{2}=-4 x^{2}-4 x \\
3 x+3=-4 x \\
3=-7 x \\
-\frac{3}{7}=x
\end{gathered}
$$

$$
\begin{gathered}
\text { Example } 3 x-\frac{2}{x-3}=\frac{x-1}{3-x} \quad \text { note } x \neq 3 \\
x-\frac{2}{x-3}=\frac{x-1}{-(x-3)} \\
(x-3)\left(x-\frac{2}{x-3}\right)=(x-3)\left(\frac{x-1}{-(x-3)}\right) \\
(x-3) x-2=-(x-1) \\
x^{2}-3 x-2=1-x \\
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
x-3, x=-1
\end{gathered}
$$

Example $4 \quad \frac{2 x}{x-1}+\frac{x-5}{x^{2}-1}=1 \quad$ note: $x \neq \pm 1$

$$
\begin{gathered}
\frac{2 x}{x-1}+\frac{x-5}{(x-1)(x+1)}=1 \\
(x-1)(x+1)\left(\frac{2 x}{x-1}+\frac{x-5}{(x-1)(x+1)}\right)=(x-1)(x+1) 1 \\
2 x(x+1)+x-5=x^{2}-1 \\
2 x^{2}+2 x+x-5=x^{2}-1 \\
x^{2}+3 x-4=0 \\
(x+4)(x-1)=0 \\
x=-4, x \leq 1
\end{gathered}
$$

