Notes 2.6 - Rational Functions

I. Definition:

- Let f and g be polynomial functions with $g(x) \neq 0$, then

$$
y(x)=\frac{f(x)}{g(x)}
$$

is a rational function.

II. Vertical and Horizontal Asymptotes

- Def: The line $x=a$ is a vertical asymptote of the graph of the function f iff

$$
\lim _{x \rightarrow a^{+}} f(x)= \pm \infty \text { or } \lim _{x \rightarrow a^{-}} f(x)= \pm \infty
$$

- Def: The line $y=b$ is a horizontal asymptote of the graph of the function f iff

$$
\lim _{x \rightarrow \pm \infty} f(x)=b
$$

III. Basic Rational Function

$$
f(x)=\frac{1}{x}
$$

10 Characteristics?

TV. Transformations

- Example - Describe how $g(x)$ can be obtained by transforming $f(x)=\frac{1}{x}$.
A.) $g(x)=\frac{3}{x-4}$
B.) $g(x)=\frac{2 x-5}{x+7}$
-Vertically Stretch by 3
- Translate right 4

$$
g(x)=\frac{2 x-5}{x+7}=2-\frac{19}{x+7}
$$

- Reflect over the x
- Vert. Stretch by 19
- Trans. left 7
- Trans. up 2

V. Limits and Asymptotes

- Ex. Find the vertical and horizontal asymptotes for each of the following and describe the behavior at each vertical asymptote.
A.) $f(x)=\frac{2 x^{2}-1}{x^{2}+3}$
B.) $f(x)=\frac{x-3}{x+3}$
A.) $f(x)=\frac{2 x^{2}-1}{x^{2}+3}$
- V.A. - None
- H.A. $y=2$ Why?

$$
\begin{aligned}
& \lim _{x \rightarrow \pm \infty} f(x)=\frac{\frac{2 x^{2}}{x^{2}}-\frac{1}{x^{2}}}{\frac{x^{2}}{x^{2}}+\frac{3}{x^{2}}}= \\
& \lim _{x \rightarrow \pm \infty} \frac{2-\frac{1}{x^{2}}}{1+\frac{3}{x^{2}}}=\frac{2-\frac{1}{ \pm \infty}}{1+\frac{3}{ \pm \infty}}=\frac{2-0}{1+0}=2
\end{aligned}
$$

$$
\begin{aligned}
& \text { B.) } f(x)=\frac{x-3}{x+3} \\
& \text { - V.A.: } x=-3 \\
& \text { - H.A.: } y=1 \\
& \lim _{x \rightarrow \pm \infty}=\frac{x-3}{x+3}=\frac{\lim _{x \rightarrow-3^{+}}=\frac{-3^{+}-3}{\left(-3^{+}\right)+3}=\frac{-6}{0^{+}}=-\infty}{\frac{x}{x}+\frac{3}{x}}= \\
& \lim _{x \rightarrow \pm-3^{-}}=\frac{-3^{-}-3}{\left(-3^{-}\right)+3}=\frac{-6}{0^{-}}=\infty \\
& 1+\frac{1-\frac{3}{x}}{1+\frac{3}{x}}=\frac{1-0}{1+0}=1
\end{aligned}
$$

VI. Slant Asymptotes

- Def - The end behavior asymptote of a rational function when the highest power is in the numerator.

Ex - Find the slant asymptote of

$$
f(x)=\frac{x^{2}+2 x-3}{x+2}
$$

$$
x + 2 \longdiv { x ^ { 2 } + 2 x - 3 } = x - \frac { 3 } { x + 2 }
$$

- Therefore, the line $y=x$ is the slant asymptote of the graph of $f(x)$.
This means the graph of $f(x)$ will act like the line $y=x$ as x approaches $\pm \infty$

Ex - Using intercepts and asymptotes graph

$$
f(x)=\frac{x^{2}+2 x-3}{x+2}
$$

x-intercepts : $(-3,0)$ and $(1,0)$
y-intercept: $(0,-3 / 2)$
V.A.: $x=-2$
H.A.: None
S.A.: $y=x$

- How do we graph it?
1.) Plot the intercepts on the plane.
2.) Draw dashed lines for all asymptotes.
3.) Determine the behaviors at each V.A.

$$
\begin{aligned}
& \lim _{x \rightarrow-2^{+}}=\frac{\left(-2^{+}+3\right)\left(-2^{+}-1\right)}{\left(-2^{+}\right)+2}=\frac{-3}{0^{+}}=-\infty \\
& \lim _{x \rightarrow 2^{-}}=\frac{\left(-2^{-}+3\right)\left(-2^{-}-1\right)}{\left(-2^{-}\right)+2}=\frac{-3}{0^{-}}=\infty
\end{aligned}
$$

$$
f(x)=\frac{x^{4}-2 x+1}{x-2}
$$

- V.A. $-x=2$
- H. A. - None
- S.A. $-y=x^{3}+2 x^{2}+4 x+6$
- Ex - Find all the asymptotes of

$$
f(x)=\frac{x^{4}-2 x+1}{x-2}
$$

Ex-

- Analyze and graph

$$
f(x)=\frac{2 x^{2}-2}{x^{2}-4}
$$

Ex-

- Analyze and graph

$$
f(x)=\frac{x^{3}-3 x^{2}+3 x+1}{x-1}
$$

