Notes 2.5 -Complex Zeros and the Fundamental Theorem of Algebra

1. The Fundamental Theorem of

Algebra-

A.) Thm: A polynomial function of degree $n>0$ has n complex zeros. Some of these zeros may be repeated.
B.) Thm: The Linear Factorization Theorem-

If f is a polynomial function of degree $n>0$, then f has precisely n linear factors and

$$
f(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots\left(x-z_{n}\right)
$$

where a is the leading coefficient of $f(x)$. The z_{i} are not necessarily distinct numbers, some may be repeated.
C.) Fundamental Polynomial Connections to the Complex Case
1.) $x=k$ is a solution (or root) of the equation $f(x)=0$.
2.) k is a zero of the function f.
3.) k is an x-intercept of the graph of $y=f(x)$.

NOTE $-(k, 0)$ is not an x-intercept if k is complex.
D.) Ex.- Write the polynomial in standard form and identify the zeros of the function and the x - intercepts.

$$
f(x)=(x+2)(x-3)(x-2 i)(x+2 i)
$$

$$
f(x)=\left(x^{2}-x-6\right)\left(x^{2}+4\right)=
$$

$$
f(x)=x^{4}-x^{3}-2 x^{2}-4 x-24
$$

Real zeros of $-2,3 \quad x$-intercepts of
Complex zeros of $\pm 2 i \quad(-2,0) \&(3,0)$
y-intercept of $(0,-24)$

111. Complex Conjugate Zeros

A.) For any poly. fn. $f(x)$ with REAL COEFFICIENTS, if a and b are real numbers with $b \neq 0$ and $a+b i$ is a zero of $f(x)$, then the complex conjugate $a-b i$ is also a zero of $f(x)$.
B.) Ex. - Write a poly. fn. of minimum degree in standard form with real coefficients whose zeros include $-3,1,1-2 i$.

$$
\begin{gathered}
f(x)=(x+3)(x-1)(x-(1-2 i))(x-(1+2 i)) \\
f(x)=\left(x^{2}+2 x-3\right)(x-1+2 i)(x-1-2 i) \\
f(x)=\left(x^{2}+2 x-3\right)\left(x^{2}-2 x+5\right) \\
f(x)=x^{4}-2 x^{2}+16 x-15
\end{gathered}
$$

IV. Factoring a Poly. with Complex Zeros

Ex. - Use your calculator to help find all the zeros of the following function and write in a linear factorization form.

$$
\begin{aligned}
& f(x)=x^{5}-3 x^{4}-5 x^{3}+5 x^{2}-6 x+8 \\
& f(x)=a\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots\left(x-z_{n}\right)
\end{aligned}
$$

- Real Zeros - $x=-2,1,4$
- Use synthetic division to find the "irreducible quadratic"

$$
\begin{aligned}
& \begin{array}{lllllllllllll}
-2 & 1 & -3 & -5 & 5 & -6 & 8 & 4 & 1 & -4 & 1 & -4
\end{array} \\
& \begin{array}{lllll}
-2 & 10 & -10 & 10 & -8 \\
\hline
\end{array} \\
& \text { 1] } 1 \begin{array}{lllll}
-5 & 5 & -5 & 4
\end{array} \\
& \\
& x^{2}+1=0 \\
& x= \pm i \\
& f(x)=(x+2)(x-1)(x-4)(x-i)(x+i)
\end{aligned}
$$

Ex.- Find all the complex zeros of $f(x)=4 x^{4}+17 x^{2}+14 x+65$ If one zero is $1-2 i$.

$$
\begin{aligned}
& (x-(a-b i))(x-(a+b i))=\left(x^{2}-2 a x+\left(a^{2}+b^{2}\right)\right) \\
& (x-(1-2 i))(x-(1+2 i))=\left(x^{2}-2 x+5\right)
\end{aligned}
$$

Now use Long Division or Synthetic Division to find the other factor(s)

$$
x ^ { 2 } - 2 x + 5 \longdiv { 4 x ^ { 4 } + 1 7 x ^ { 2 } + 1 4 x + 6 5 }
$$

Now use quadratic formula to linearize the other factor

$$
\begin{aligned}
& x=\frac{-8 \pm \sqrt{8^{2}-4(4)(13}}{2(4)} \quad x=\frac{-8 \pm \sqrt{64-208}}{8} \\
& x=\frac{-8 \pm \sqrt{-144}}{8}=\frac{-8 \pm 12 i}{8}=-1 \pm \frac{3}{2} i \\
& x=1 \pm 2 i,-1 \pm \frac{3}{2} i \\
& f(x)=4(x-1+2 i)(x-1-2 i)\left(x+1+\frac{3}{2} i\right)\left(x+1-\frac{3}{2} i\right) \\
& f(x)=(x-1+2 i)(x-1-2 i)(2 x+2+3 i)(2 x+2-3 i)
\end{aligned}
$$

Homework: p. 215 \#3-42 (mult. of 3)

