Notes 2.4 -Real Zeros of Polynomial Functions

I. Long Division Algorithm:

A.) Divisor x Quotient + Remainder $=$ Dividend
B.) $1 6 \longdiv { 1 6 4 8 } = 1 6 \longdiv { 1 6 4 8 } = 1 0 3$
C.) Same for Polynomials-
D.) Given the following function with $x=-1$ as one zero of f, find the other two zeros algebraically using long division.

$$
f(x)=x^{3}-4 x^{2}-19 x-14
$$

$$
\begin{array}{cc}
x^{2}-5 x-14 & (x+1)\left(x^{2}-5 x-14\right)=0 \\
x + 1 \longdiv { x ^ { 3 } - 4 x ^ { 2 } - 1 9 x - 1 4 } & (x+1)(x-7)(x+2)=0 \\
\frac{x^{3}+x^{2}}{-5 x^{2}-19 x-14} & x=-1,-2,7 \\
\frac{-5 x^{2}-5 x}{-14 x-14} & \\
\frac{-14 x-14}{} &
\end{array}
$$

II. L. D. Alg. For Polynomials
A.) Polynomial Form: $\quad f(x)=d(x) \cdot q(x)+r(x)$

quotient
B.) Fraction Form: $\quad \frac{f(x)}{d(x)}=q(x)+\frac{r(x)}{d(x)}$
C.) Divide $f(x)$ by $d(x)$ and write the statement in both polynomial and fraction form. $f(x)=x^{3}+4 x^{2}+7 x-7$

$$
\begin{array}{cc}
x^{2}+x+4 & d(x)=x+3 \\
x + 3 \longdiv { x ^ { 3 } + 4 x ^ { 2 } + 7 x - 7 } & \text { POLY. FORM: } \\
\frac{x^{3}+3 x^{2}}{x^{2}+7 x-7} & f(x)=(x+3)\left(x^{2}+x+4\right)-19 \\
\frac{x^{2}+3 x}{4 x-7} & \frac{f(x)}{(x+3)}=\left(x^{2}+x+4\right)-\frac{19}{(x+3)} \\
\frac{4 x+12}{-19} &
\end{array}
$$

III. Remainder and Factor Theorems

A.) Special Case: $d(x)=x-k$ where k is a real number-
because $x-k$ is degree one, the remainder is always a real number.
B.) Remainder Thm: If $f(x)$ is divided by $x-k$, then the remainder $r=f(k)$.
1.) Ex. - Find the remainder when the following is divided by $x+3$.

$$
f(x)=x^{3}-x^{2}+2 x-1
$$

$$
f(-3)=(-3)^{3}-(-3)^{2}+2(-3)-1 \quad f(-3)=-43
$$

C.) Factor Thm: A poly. fn. $f(x)$ has a factor of $x-k$ if $f(k)=0$.
1.) Ex. - Use the factor theorem to decide if $x-2$ is a factor of $f(x)=x^{3}+3 x-4$

$$
\begin{array}{r}
f(2)=(2)^{3}+3(2)-4 \quad f(2)=10 \\
\mathrm{NO}!!
\end{array}
$$

2.) Rule - FACTOR FIRST!!! You may not need long div. or remainder and factor theorems.

17. Fundamental Connections for

 Polys.The following statements are equivalent:
A.) $x=k$ is a solution (or root) of the equation $f(x)=0$.
B.) k is a zero of the function f.
C.) k is an x-intercept of the graph of $y=f(x)$.
D.) $x-k$ is a factor of $f(x)$.

V. Synthetic Division

Shortcut method when $x-k$ is a factor of $f(x)$.
A.) Process: Bring down the leading coefficient of the dividend, multiply it by k, add the $2^{\text {nd }}$ coefficient to the product and repeat the process.
B.) Ex - Use synthetic division and write the answer in fraction form.

$$
\frac{x^{3}-5 x^{2}+3 x-2}{x+1}
$$

$$
\begin{aligned}
& \begin{array}{llll}
-1 \mid 1 & -5 & 3 & -2 \\
& -1 & 6 & -9
\end{array} \\
& \hline 1
\end{aligned} \frac{-6}{} 98 \quad-11 .
$$

VI. Rational Zeros Thm

$\operatorname{SPSE} f$ is a poly. fn. of degree $n \geq 1$ of the form $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x^{1}+a_{0}$ with every coefficient an integer and $a_{0} \neq 0$. If $\frac{p}{q}$ is a rational zero of f where p and q have no common factors other than 1 , then p is an integer factor of a_{0} and q is an integer factor of a_{n}
B.) Ex. - Find all the rational zeros of $f(x)=3 x^{3}+4 x^{2}-5 x-2$

$$
\begin{gathered}
\frac{a_{0}}{a_{3}}=\frac{ \pm 1, \pm 2}{ \pm 1, \pm 3}= \pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3} \\
f(1)=3+4-5-2=0 \\
(x-1)\left(3 x^{2}+7 x+2\right)=0 \\
(x-1)(3 x+1)(x+2)=0 \\
x=-2,-\frac{1}{3}, 1
\end{gathered}
$$

VII. Upper and Lower Bounds

A.) Upper Bound - A number k is an upper bound for real zeros of f if $f(x)$ is never zero when x is greater than k.
B.) Lower Bound - A number k is an lower bound for real zeros of f if $f(x)$ is never zero when x is less than k.
C.) Graphically -

D.) Upper and Lower Bound Test using Synthetic DivisionSPSE $f(x)$ is divided by $x-k$ using synthetic division,
1.) If $k \geq 0$ and every number in the last line is nonnegative, then k is an upper bound for the real zeros of f.
2.) If $k \leq 0$, and the numbers in the last line alternate nonnegative and non-positive, then k is a lower bound for the real zeros of f.
E.) Ex.-Prove that all the real zeros of $f(x)=2 x^{4}-7 x^{3}+8 x^{2}+14 x+8$ must lie in the interval $[-2,5]$.

$$
\begin{aligned}
& \begin{array}{lllll}
5 & 2 & -7 & 8 & 14 \\
\hline
\end{array} \\
& \begin{array}{lllll}
10 & 15 & 115 & 645 \\
\hline 2 & 3 & 23 & 129 & 653
\end{array} \\
& \text { All Positive - UPPER BOUND } \\
& \begin{array}{lllll}
-2 \mid & -7 & 8 & 14 & 8
\end{array} \\
& \begin{array}{llll}
-4 & 22 & -60 & 92
\end{array} \\
& \begin{array}{lllll}
2 & -11 & 30 & -46 & 100
\end{array} \\
& \text { Alt. Signs - LOWER BOUND }
\end{aligned}
$$

Find all the rational zeros of the following function without a calculator.

$$
\begin{gathered}
f(x)=2 x^{4}-7 x^{3}-8 x^{2}+14 x+8 \\
x=4,-\frac{1}{2}, \pm \sqrt{2}
\end{gathered}
$$

