Notes 2.4 –Real Zeros of Polynomial Functions

I. Long Division Algorithm:

A.) Divisor x Quotient + Remainder = Dividend

B.)
$$16\overline{\smash{\big)}1648} = 16\overline{\smash{\big)}1648} = 103$$

- C.) Same for Polynomials-
- D.) Given the following function with x = -1 as one zero of f, find the other two zeros algebraically using long division. $f(x) = x^3 4x^2 19x 14$

II. L. D. Alg. For Polynomials

- A.) Polynomial Form: $f(x) = d(x) \cdot q(x) + r(x)$ divisor remainder quotient
- B.) Fraction Form: $\frac{f(x)}{d(x)} = q(x) + \frac{r(x)}{d(x)}$

C.) Divide f(x) by d(x) and write the statement in both polynomial and fraction form. $f(x) = x^3 + 4x^2 + 7x - 7$

$$x^{2} + x + 4$$

$$x + 3) x^{3} + 4x^{2} + 7x - 7$$
POLY. FORM:
$$x^{3} + 3x^{2}$$

$$x^{2} + 7x - 7$$

$$x^{2} + 7x - 7$$

$$x^{2} + 3x$$

$$4x - 7$$

$$4x + 12$$

$$-19$$

$$x^{2} + x + 4$$
POLY. FORM:
$$x^{2} + x + 4 - 19$$
FRACTION FORM:
$$x^{2} + 3x$$

$$4x - 7$$

$$4x + 12$$

$$-19$$

III. Remainder and Factor Theorems

- A.) Special Case:d(x) = x k where k is a real number-because x k is degree one, the remainder is always a real number.
- B.) Remainder Thm: If f(x) is divided by x k, then the remainder r = f(k).
 - 1.) Ex. Find the remainder when the following is divided by x + 3. $f(x) = x^3 x^2 + 2x 1$

$$f(-3) = (-3)^3 - (-3)^2 + 2(-3) - 1$$
 $f(-3) = -43$

- C.) Factor Thm: A poly. fn. f(x) has a factor of x k if f(k) = 0.
 - 1.) Ex. Use the factor theorem to decide if x 2 is a factor of $f(x) = x^3 + 3x 4$

$$f(2) = (2)^3 + 3(2) - 4$$
 $f(2) = 10$

NO!!

2.) Rule – FACTOR FIRST!!! You may not need long div. or remainder and factor theorems.

TV. Fundamental Connections for Polys.

The following statements are equivalent:

- A.) x = k is a **solution** (or root) of the equation f(x) = 0.
- B.) k is a **zero** of the function f.
- C.) k is an x-intercept of the graph of y = f(x).
- D.) x k is a **factor** of f(x).

V. Synthetic Division

Shortcut method when x - k is a factor of f(x).

- A.) Process: Bring down the leading coefficient of the dividend, multiply it by k, add the 2^{nd} coefficient to the product and repeat the process.
- B.) Ex Use synthetic division and write the answer in fraction form.

$$\frac{x^3 - 5x^2 + 3x - 2}{x + 1}$$

$$\frac{x^3 - 5x^2 + 3x - 2}{x + 1} = x^2 - 6x + 9 - \frac{11}{x + 1}$$

VI. Rational Zeros Thm

- A.) SPSE f is a poly. fn. of degree $n \ge 1$ of the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x^1 + a_0$ with every coefficient an integer and $a_0 \ne 0$. If $\frac{p}{q}$ is a rational zero of f where p and q have no common factors other than 1, then p is an integer factor of a_0 and q is an integer factor of a_n
- B.) Ex. Find all the rational zeros of $f(x)=3x^3+4x^2-5x-2$

$$\frac{a_0}{a_3} = \frac{\pm 1, \pm 2}{\pm 1, \pm 3} = \pm 1, \pm 2, \pm \frac{1}{3}, \pm \frac{2}{3}$$

$$f(1) = 3 + 4 - 5 - 2 = 0$$

$$(x - 1)(3x^2 + 7x + 2) = 0$$

$$(x - 1)(3x + 1)(x + 2) = 0$$

$$x = -2, -\frac{1}{3}, 1$$

VII. Upper and Lower Bounds

- A.) Upper Bound A number k is an upper bound for real zeros of f if f(x) is never zero when x is greater than k.
- B.) Lower Bound A number k is an lower bound for real zeros of f if f(x) is never zero when x is less than k.
- C.) Graphically -

Upper Bound

- D.) Upper and Lower Bound Test using Synthetic Division-SPSE f(x) is divided by x - k using synthetic division,
 - 1.) If $k \ge 0$ and every number in the last line is non-negative, then k is an upper bound for the real zeros of f.
 - 2.) If $k \le 0$, and the numbers in the last line alternate nonnegative and non-positive, then k is a lower bound for the real zeros of f.
- E.) Ex.—Prove that all the real zeros of $f(x) = 2x^4 7x^3 + 8x^2 + 14x + 8$ must lie in the interval [-2, 5].

All Positive – UPPER BOUND

Alt. Signs – LOWER BOUND

Find all the rational zeros of the following function without a calculator.

$$f(x) = 2x^4 - 7x^3 - 8x^2 + 14x + 8$$

$$x = 4, -\frac{1}{2}, \pm \sqrt{2}$$

