Notes 2.3 – Polynomials of Higher Degree

I. Polynomial Functions:

- A.) Standard Form: $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0$
- B.) Cubic Functions Poly. of degree 3
- C.) Quartic Functions Poly. of degree 4
- D.) All polynomial functions are smooth, continuous curves. No "jumps", "corners", or "cusps".

II. Cubic Functions

- A.) General Form: $f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$
- B.) $a_3 > 0$:
- C.) $a_3 < 0$:

III. Quartic Functions

- A.) General Form: $f(x) = a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$
- B.) $a_4 > 0$:
- C.) $a_4 < 0$:

TV. Comparing Graphs of Polys and Their Leading Terms

A.) Using your TI-83+, graph the following on the same axis: $y = x^3 - 4x^2 - 5x - 3$ $y = x^3$

Zoom out until both graphs look alike.

All Polynomial functions will model the same behavior as the function's leading term.

V. Local Extrema

- A.) Theorem: A poly. Fn. of degree *n* has at most *n*-1 local extrema and at most *n* zeros.
- B.) Ex Find any local extrema on the following graph:

$$f(x) = x^3 - 6x^2 + 6x - 2$$

VI. End Behavior

- A.) Related to the E.B. of the leading term.
- B.) Cubic $f(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$

$$a_3 > 0$$
: $\lim_{x \to \infty} f(x) = \infty$

$$a_3 > 0: \lim_{x \to \infty} f(x) = \infty$$
 $a_3 < 0: \lim_{x \to \infty} f(x) = -\infty$
$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

$$\lim_{x \to -\infty} f(x) = -\infty$$

$$\lim_{x \to -\infty} f(x) = \infty$$

C.) Quartic -
$$f(x) = a_3 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

$$a_4 > 0$$
: $\lim_{x \to +\infty} f(x) = \infty$

$$a_4 > 0$$
: $\lim_{x \to \pm \infty} f(x) = \infty$ $a_4 < 0$: $\lim_{x \to \pm \infty} f(x) = -\infty$

VII. Zeros of Polynomials

- A.) Zero of a function The x value when y = 0
- B.) Set f(x) = 0 and solve.
- C.) Multiplicity of a Zero of a Poly. Fn. If f is a poly. fn. and $(x-c)^m$ is a factor of f but $(x-c)^{m+1}$ is not, then c is a zero of multiplicity m of f.
 - 1.) Even Multiplicity Graph does not cross the *x*-axis.
 - 2.) Odd Multiplicity Graph does cross the *x*-axis.

1.) Ex- Consider the function $f(x) = (x+2)^4 (x-1)^3$ The zeros are -2 and 1.

-2 has a multiplicity of 4, and 1 has a multiplicity of 3.

Therefore, the graph will touch, but not cross, the *x*-axis at x = -2, and cross the *x*-axis at x = 1.

Since the leading term will be x^7 , the graph will start in the 3^{rd} quadrant, and end in the first.

VIII. Intermediate Value Thm.

If a and b are real numbers and f is continuous on [a, b], then f takes on every value between f(a) and f(b). In other words, if g is between g and g and g then g in g for some number g in g in g.

Cor: If f(a) and f(b) have opposite signs, then f(c) = 0 for some number c in [a, b].

Prove $f(x) = x^3 - 2x + 1$ has at least 1 real zero.

Polynomial? Yes!

Pick two numbers that may give you opposite signs.

$$f(2) = 2^3 - 2(2) + 1 = 5$$

$$f(-2) = -2^3 - 2(-2) + 1 = -3$$

 $\therefore f(x) = 0$ at least once between -2 and 2.

IX. Modeling

- We want a "good fit" – try to find a balance between good fit and simplicity. Generally, try to use an accurate model of the lowest degree.