2-2: Power Functions With Modeling

Power Functions:

- Any function that can be written in the form:

$$
f(x)=k x^{a}, \text { where } k \text { and } a \text { are constants }
$$

- a is the power
$\circ k$ is the constant of variation(proportion)
- We say $f(x)$ varies as the $a^{\text {th }}$ power of x.

| | Examples of Power Functions | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Name | Formula | Power | Constant of
 Variation | Read as |
| Circumference | $C=2 \pi r$ | 1 | 2π | Cvaries directly as r. |
| Volume of a
 Sphere | $A=\frac{4}{3} \pi r^{3}$ | 3 | $\frac{4}{3} \pi$ | V varies directly as the
 cube of r. |
| Force of
 Gravity | $F=\frac{k}{d^{2}}$ | -2 | k | Fvaries inversely as
 the square of d. |
| Boyle's Law | $v=\frac{k}{P}$ | -1 | k | V varies inversely as P. |

Power Functions:

- Direct Variation
- As the independent variable increases, the dependent variable increases.

$$
\text { Examples: } C=2 \pi r \quad A=\pi r^{2} \quad V=s^{3}
$$

- Inverse Variation
- As the independent variable increases, the dependent variable increases.

$$
\text { Examples: } \quad F=\frac{k}{d^{2}} \quad V=\frac{k}{P}
$$

Note: The power function formulas with positive powers are statements of direct variation and power function formulas with negative powers are statements of inverse variation. Unless the word inversely is included, it is assumed that the variation is direct.
B. Basic power functions:

You have already been introduced to the following power functions:

$$
x, x^{2}, x^{3}, x^{-1}=\frac{1}{x}, x^{\frac{1}{2}}=\sqrt{x}
$$

c. Examples

1. The period of time T for the full swing of a pendulum varies as the square root of the pendulum's length $/$. Express this relationship as a power function.

$$
T=k \sqrt{l}=k l^{\frac{1}{2}}
$$

Example 2: Analyze the following functions

a.	$f(x)=\sqrt[3]{x}$	b.	$g(x)=1 / x^{2}$
Power: $1 / 3$		Power: -2	
C.o.v.: 1		C.o.v.: 1	
D: $(-\infty, \infty)$	D: $(-\infty, 0) \cup(0, \infty)$		
R: $(-\infty, \infty)$	R: $(0, \infty)$		
C: continuous for all x		C: infinite discontinuity at $x=0$	
I/D: increasing for all x	I/D: inc: $(-\infty, 0)$, dec: $(0, \infty)$		
S: odd	S: even		
B: not bounded above or below	B: bounded below		
E: no local extrema	E: no local extrema		
A: no asymptotes	A: v.a.: $x=0$, h.a.: $y=0$		
E.B: $\lim _{x \rightarrow-\infty} \sqrt[3]{x}=-\infty, \lim _{x \rightarrow \infty} \sqrt[3]{x}=\infty$	E.B: $\lim _{x \rightarrow-\infty} 1 / x^{2}=0, \lim _{x \rightarrow \infty} 1 / x^{2}=0$		

Graphs of Power Functions

- Monomial Function

- Any function that can be written as:

$$
f(x)=k \text { or } f(x)=k x^{n}
$$

where k is a constant and n is a positive integer

- Comparing the graphs of monomial functions
- Compare the monomials where $n=1,2,3,4,5$, and 6 , in the standard window, as well as the window $\mathrm{x}:[0,1]$ and $\mathrm{y}:[0,1]$. Make any observations.

Graphing Monomial Functions

Describe how to obtain the graph of the given function from its power parent function. Then sketch the graph of the function.
a. $f(x)=2 x^{3}$
b. $f(x)=-\frac{2}{3} x^{4}$

Parent function: $f(x)=x^{3}$
vertically stretch by a factor of 2

Parent function: $f(x)=x^{4}$
vertically shrink by a factor of $2 / 3$ reflect over x -axis

The graphs below represent the four general shapes that are possible for power functions of the form $f(x)=k x^{a}$ for $x \geq 0$.
a. $k>0$
b. $k<0$

Graphing Power Functions $f(x)=k x^{a}$
Describe the following graphs without using your calculator. Graph to check your accuracy.

Function

Description

Because $\mathrm{k}=2$, the graph passes through $(1,2)$
a. $f(x)=2 x^{-3}$

Because a <0, the graph is asymptotic to both axes The function is odd
b. $f(x)=-0.4 x^{1.5} \quad$ Because $\mathrm{k}=-0.4$, the graph passes through $(0,0)$ and $(1,-0.4)$

The function is undefined for $\mathrm{x}<0$.
c. $f(x)=-x^{4} \quad$ since $\mathrm{k}=-1$ and is negative and $0<\mathrm{a}<1$, the graph contians $(0,0)$ and $(1,-1)$. In the fourth quadrant, it is decreasing
The function is even.

Modeling with Power Functions

Kepler's third law of planetary motion states that the period of orbit (T) is related to the distance a from the sun according to the equation:

$$
T(a) \approx k a^{\frac{3}{2}}
$$

Average distances and orbit periods for the six innermost planets

Planet	Average distance from the Sun (Gm)	Period of Orbit (days)
Mercury	57.9	88
Venus	108.2	225
Earth	149.6	365.2
Mars	227.9	687
Jupiter	778.3	4332
Saturn	1427	10760

Modeling with Power Functions

A. Find a power model for the orbital period:

$$
T(a) \approx 0.20 a^{1.5}
$$

B. Graph the data as well as the power model on your calculator to see how they fit.
c. Predict the orbital period for Neptune, which is 4497 Gm from the Sun on Average

$$
60313.47 \text { days }
$$

D. Compare this to the actual answer, which is about 60313

Homework: p.182 \#3-48 (multiples of 3), 49-63

