Notes 2.1 - Linear and Quadratic Functions

I. Polynomial Functions:

A.) Polynomial Function: Let n be a nonnegative integer and let $a_{0}, a_{1}, a_{2, \ldots}, a_{n-1}, a_{n}$ be real numbers with $a_{n} \neq 0$.

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}
$$

is a polynomial function of degree n with a leading coefficient a_{n}.
B.) Examples:

Polynomials:

$$
f(x)=3 x^{3}+2 x^{2}-x+1 \quad f(x)=15 x-2 x^{4}
$$

Non-polynomials:

$$
f(x)=6 x^{-3} \quad f(x)=\sqrt{6-x^{4}}
$$

C.) Poly. Fns. Of Low and No Degree -

Name	Form	Degree
Zero	$f(x)=0$	Undefined
Constant	$f(x)=a, a \neq 0$	0
Linear	$f(x)=a x+b, a \neq 0$	1
Quadratic	$f(x)=a x^{2}+b x+c, a \neq 0$	2

II. Linear Equations $f(x)=a x+b, \quad a \neq 0$

A.) Terms:
1.) a is slope of the line.
2.) a is also the constant rate of change of the equation.
3.) b is the y-intercept of the graph of the equation.
B.) Finding the equation of a line:

Ex- Find the equation of the line passing through the points $(-1,2)$ and $(5,9)$ in point-slope form.

PT/SLOPE FORM: $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& m=\frac{9-2}{5+1}=\frac{7}{6} \\
& y-9=\frac{7}{6}(x-5) \quad y-2=\frac{7}{6}(x+1)
\end{aligned}
$$

C.) Rate of Change: Average Rate of Change in from a to b is

$$
\frac{f(b)-f(a)}{b-a}
$$

D.) Ex. Find the average rate of change of from $x=2$ to $x=4$ of $f(x)=\frac{1}{2} x^{2}+3$

$$
=\frac{f(4)-f(2)}{4-2}=\frac{11-5}{2}=3
$$

71. Linear Modeling and Correlation

A.) Linear Correlation - How close the data is to the regression line.
1.) Positive Linear - Strong/Weak
2.) Negative Linear - Strong/Weak
3.) Little or No Correlation
B.) The Correlation Coefficient r :

Properties of r
1.) $-1 \leq r \leq 1$
2.) If $r>0$, POSITIVE CORRELATION
3.) If $r<0$, NEGATIVE CORRELATION
4.) If $|r|=1$, PERFECT CORRELATION
5.) If $|r|=0$, NO CORRELATION

IV. Quadratic Functions

A.) Polynomial of degree 2 .
B.) Forms:
1.) Standard Form: 2.) Vertex Form:

$$
f(x)=a x^{2}+b x+c \quad f(x)=a(x-h)^{2}+k
$$

Vertex: $\quad\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right) \quad(h, k)$ Axis: $\quad x=-\frac{b}{2 a} \quad x=h$

Max/Min: $\quad y=f\left(-\frac{b}{2 a}\right) \quad y=k$

\[

\]

C.) Ex- Find the vertex, axis of symmetry, max/min, y int., x-int., of the following and rewrite in vertex form.

\[

\]

D.) Ex-Complete the square to rewrite the following in vertex form.

$$
f(x)=2 x^{2}-4 x+13
$$

vertex form:

$$
f(x)=2(x-1)^{2}+11
$$

थ. Free-Fall

A.) The position(height) of an object is given by the equations:
1.) $s(t)=-16 t^{2}+v_{0} t+s_{0}$
2.) $s(t)=-4.9 t^{2}+v_{0} t+s_{0}$
where t is in secs. and s is in ft . where t is in secs. and s is in m .
B.) The velocity of an object is given by the equations:
1.) $v(t)=-32 t+v_{0}$
2.) $v(t)=-9.8 t+v_{0}$
where t is in secs. and v is in $\mathrm{ft} . / \mathrm{sec}$
where t is in secs. and v is in $\mathrm{m} / \mathrm{sec}$.
C.) Speed $=|v(t)|$
D.) Ex- Johnny throws a rock directly upward with an initial velocity of 48 ft ./sec., from an initial height of 9 ft . Find the following:
1.) How long is the rock in the air?
2.) What is the maximum height the rock reaches?
3.) What is the velocity of the rock when it hits the ground?
1.) How long is the rock in the air?

$$
\begin{array}{rl}
s(t)=-16 t^{2}+48 t+9 & 0 \\
& =-16 t^{2}+48 t+9 \\
t & \approx 3.177 \mathrm{sec}
\end{array}
$$

2.) What is the maximum height the rock reaches?

$$
v \approx(1.5,45) \quad \therefore 45 \mathrm{ft} .
$$

3.) What is the velocity of the rock when it hits the ground?

$$
v(t)=-32 t+48 \quad v(3.177)=-32 t+48=-53.664 \frac{\mathrm{ft}}{\mathrm{sec}}
$$

