

The Graph of $y=\tan (\theta)$

- What is the period of the tangent function?

The graph of $y=\tan (\theta)$ is defined between $-\pi / 2$ and $\pi / 2$, so the period is π.

- The breaks in the graph are referred to as asymptotes. An a symptote will a ppear every time ta ngent is undefined. An asymptote is defined as:

A line which a graph approachesas x or y increases in absolute value. The equation is undefined at this point.

Graphing a Tangent Function

The full tangent function is $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{\operatorname { t a n }} \boldsymbol{b} \boldsymbol{\theta}$.

- The Period of a Tangent Function is $\frac{\pi}{b}$
- One cycle occurs between $-\frac{\pi}{2 b}$ to $\frac{\pi}{2 b}$
- Asymptotes oc cur at the start and end of each cycle
- The a value marks half way between an a symptote and the zero for each cycle.

Graph $y=\tan (2 \theta)$

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n }}(\boldsymbol{\theta})$
$-\pi / 8$	-1
0	0
$\pi / 8$	1

a. Find the period of the function: $\frac{\pi}{b}=\frac{\pi}{2}$
b. Determine where the asymptotes are for one cycle using

$$
-\frac{\pi}{2 b} \text { and } \frac{\pi}{2 b}-\frac{\pi}{2 b}=-\frac{\pi}{2(2)}=-\frac{\pi}{4} \quad \frac{\pi}{2 b}=\frac{\pi}{2(2)}=\frac{\pi}{4}
$$

Graph $y=2 \tan (1 / 2 \theta)$

$\boldsymbol{\theta}$	$\boldsymbol{\operatorname { t a n }}(\boldsymbol{\theta})$
$-\pi / 2$	-2
0	0
$\pi / 2$	2

a. Find the period of the function:

$$
\frac{\pi}{b}=\frac{\pi}{1 / 2}=2 \pi
$$

b. Determine where the asymptotes are for one cycle using

$$
-\frac{\pi}{2 b} \text { and } \frac{\pi}{2 b} \quad-\frac{\pi}{2 b}=-\frac{\pi}{2(1 / 2)}=-\pi \quad \frac{\pi}{2 b}=\frac{\pi}{2(1 / 2)}=\pi
$$

