Notes 10.4 - Random Variables and Probability Models - Day 2

I. Binomial Distributions Continued

A.) Expected Value for a Binomial Distribution with n trials with a probability of success p is given by

$$
\mu=E(X)=n p
$$

B.) Standard Deviation for a Binomial Distribution with n trials with a probability of success p and a probability of failure q is given by

$$
\sigma=\sqrt{n p q}
$$

C.) Ex. - You are have been given 100-question multiple choice test with each question having 4 possible choices. If you were to randomly choose each answer, what would be your expected score on the test if each question is worth one point?

$$
\mu=100\left(\frac{1}{4}\right)=25 \%
$$

D.) Ex. - What would your standard deviation be?

$$
\sigma=\sqrt{100\left(\frac{1}{4}\right)\left(\frac{3}{4}\right)} \approx 4.330
$$

II. The Normal Model Revisited

A.) The Standard Normal Probability distribution for a population mean μ and standard deviation σ is given by

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-(x-\mu)^{2} /\left(2 \sigma^{2}\right)}
$$

This basically centers the normal curve to have a mean of zero. The distance from the mean is measured in standard deviation units called z-scores. If random variable X has a mean μ and a standard deviation σ, then for a given value of X the z-score is

$$
Z=\frac{x-\mu}{\sigma}
$$

B.) Ex. - The distribution of heights of American women is approximately Normal, with a mean of 63.8 inches and a standard deviation of 2.8 inches. Find the probabilities of each of the following:
1.) A randomly select woman is 5 ft . 10 in . tall $z=\frac{70-63.8}{2.8} \approx 2.2143$
normalpdf $2.2143,0,10$
...............................0343724201.
2.) A randomly select woman is shorter than 5 ft . 10 in . normalcdf($-1 \mathrm{E} 99,2.2143,0$, . 986595979717
3.) A randomly select woman is taller than 5 ft . 10 in .

1-Ans

0134040283

4.) How tall are the shortest 5% of all adult American

-1.644853626.

$$
\begin{aligned}
& -1.6449=\frac{x-63.8}{2.8} \\
& x=59.19428<4^{\prime} 11.19428^{\prime \prime}
\end{aligned}
$$

