Notes 10.4 - Random Variables and Probability Models - Day 1

I. Expected Values

A.) Random Variable
1.) Def: That which assumes numerical values as a result of some random event.
2.) Notation: Random variables are denoted by capital letters.
Ex: Let X equal the result of rolling a six-sided die.

$$
X=\{1,2,3,4,5,6\}
$$

II. Probability Model

A.) Def. - A PROBABILITY Model is a random variable X together with the function that assigns to each possible outcome a probability $P\left(x_{i}\right)$ such that $\sum_{i=1}^{n} P\left(x_{i}\right)=1$.
Ex:

$$
\begin{array}{ccccccc}
X & 1 & 2 & 3 & 4 & 5 & 6 \\
P(X) & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6} & \frac{1}{6}
\end{array}
$$

B.) Expected Value of a Random Variable:

Def: The mean of the probability model, or the sum of the values of X multiplied by their corresponding probabilities.

$$
\mu=E(X)=\sum_{i=1}^{n} x_{i}\left(P\left(x_{i}\right)\right)
$$

Example: Some fantasy games use a 12sided die. Suppose one such die has a 1 on seven of the faces, a 5 on three faces, and a 10 on the remaining two faces. What is the expected value of a roll of this die?

$$
\mu=E(X)=1\left(\frac{7}{12}\right)+5\left(\frac{3}{12}\right)+10\left(\frac{2}{12}\right)=3.5
$$

Example: Why card games are illegal at North: Suppose your huckster friend is playing a card game during lunch. You pay $\$ 5$ to pick a random card from a deck. If it's black, you lose, and he keeps the money. If it is a heart, you win your $\$ 5$ back. If it is any diamond except the ace, you win $\$ 10$. What should be the prize for drawing the ace of diamonds in order to make the game fair? $(E(X)=0)$

$$
\begin{gathered}
E(X)=0=-5\left(\frac{26}{52}\right)+(-5+5)\left(\frac{13}{52}\right)+(-5+10)\left(\frac{12}{52}\right)+(-5+A)\left(\frac{1}{52}\right) \\
E(X)=0=-5\left(\frac{1}{2}\right)+0\left(\frac{1}{4}\right)+5\left(\frac{3}{13}\right)+(-5-A)\left(\frac{1}{52}\right)
\end{gathered}
$$

$$
A=\$ 75
$$

III. Binomial Distributions

A.) Def: A probability model for the random variable X where $X=$ the number of successes in n trials given the following requirements:
1.) Each outcome has only two possible outcomes, success (p) or failure (q).
2.) The probability of success on each trial remains constant
3.) The trials are independent

It is denoted $P(X=k)=\binom{n}{k} \cdot p^{k} \cdot q^{n-k}$
B.) Ex. - You roll 6 fair dice at one time. Find the probability you rolled exactly 4 twos.

$$
P(4-2 s)=\binom{6}{4}\left(\frac{1}{6}\right)^{4}\left(\frac{5}{6}\right)^{2}=15\left(\frac{25}{46,656}\right)=\frac{125}{15,552} \approx 0.00804
$$

C.) Ex. - Find the probability of rolling at least 1 two.
$P(1+2 s)=1-\binom{6}{0}\left(\frac{1}{6}\right)^{0}\left(\frac{5}{6}\right)^{6} \quad=1-\left(\frac{15,625}{46,656}\right) \approx 0.665$
D.) Ex. - Find the probability of rolling at least 2 , but at most 5 two's. $\quad P(2 \leq x \leq 5)=P(2)+P(3)+P(4)+P(5)$

$$
P(2 \leq x \leq 5)=\frac{12,280}{46,656}=\frac{1535}{5832} \approx 0.2632
$$

Number of 2's	Probability
6	${ }_{6} C_{6} \cdot\left(\frac{1}{6}\right)^{6} \cdot\left(\frac{5}{6}\right)^{0}=\frac{1}{46656}$
5	${ }_{6} C_{5} \cdot\left(\frac{1}{6}\right)^{5} \cdot\left(\frac{5}{6}\right)^{1}=\frac{5}{7776}$
4	${ }_{6} C_{4} \cdot\left(\frac{1}{6}\right)^{4} \cdot\left(\frac{5}{6}\right)^{2}=\frac{125}{15,552}$
3	${ }_{6} C_{3} \cdot\left(\frac{1}{6}\right)^{3} \cdot\left(\frac{5}{6}\right)^{3}=\frac{625}{11,664}$
2	$\left(\frac{1}{6}\right)^{2} \cdot\left(\frac{5}{6}\right)^{4}=\frac{3125}{15,552}$
1	${ }_{6} C_{1} \cdot\left(\frac{1}{6}\right)^{1} \cdot\left(\frac{5}{6}\right)^{5}=\frac{3125}{7776}$
0	${ }_{6} C_{0} \cdot\left(\frac{1}{6}\right)^{0} \cdot\left(\frac{5}{6}\right)^{6}=\frac{15,625}{46,656}$

E.) Now, Examples B.), C.), and D.) on the calculator..

C.) $1-\operatorname{binompdf}(6,1 / 6,0)=0.665$

1-bi nompdf $(6,1 / 6,0)$
.6651020233.
D.) DISTR - 1:binomcdf
$\operatorname{binomcdf}(6,1 / 6,5)-\operatorname{binomcdf}(6,1 / 6,1)=$ 0.2632
binomedf $(6,1 / 6,5)-b i n o m c d$.2632030175

