Notes 10.3 - Statistics and Data - Numeric

I. Vocabulary

A.) Statistics - Various numbers associated with data.
B.) Parameters - numbers associated with the entire population.
C.) Samples - selected members of a population.
D.) Inferential Statistics - Statistics from a sample used to make inferences about a population.
E.) Margin of Error - A number associated with the possible percentage of error given with inferential statistics.

II. Measures of Central Tendency

A.) Mean $-\bar{x}$ or μ Arithmetic average

$$
\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\ldots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

B.) Median - "Resistant" measure of central tendency. The middle value for a set of data. (odd - middle number, even - mean of the middle two numbers)
C.) Mode - The number that occurs the most often.
D.) Weighted Mean - Arithmetic average

$$
\bar{x}=\frac{x_{1} w_{1}+x_{2} w_{2}+\ldots+x_{n} w_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i} w_{i}}{\sum_{i=1}^{n} w_{i}}
$$

E.) Ex. 1-For a certain class, homework and class work is weighted 15%, quizzes 25%, and tests are weighted 60%. Jorge has a 95% homework average, 85% quiz average and he currently has two test grades (95 and 92). What does Jorge need to score on his third and final test to secure an Aaverage for the class, assuming his teacher does not round decimal grades.

$$
\begin{aligned}
& 90=\frac{.15(95)+.25(85)+.60\left(\frac{95+92+x}{3}\right)}{1} \\
& 90=14.25+21.25+37.4+.2 x \\
& 90=72.9+.2 x \\
& 17.1=.2 x \\
& 85.5=x \\
& x \geq 86
\end{aligned}
$$

III. Five Number Summary

A.) Range $\rightarrow \max -\min$; Not resistant
B.) Interquartile Range $\rightarrow Q_{3}-Q_{1}$
$\mathrm{Q}_{1}=$ median of the lower $1 / 2$ of the data.
$\mathrm{Q}_{3}=$ median of the upper $1 / 2$ of the data.
C.) 5 Num. Summary : (Min., Q_{1}, Median, Q_{3}, Max.)

IV. Boxplots

A.) AKA Box-and-whisker plot - A graph of the five number summary for the set of data.

We can draw them by hand or use the TI-83+.

B.) Outlier - Any number that lies more than 1.5 times the IQR above Q_{3} or below Q_{1}.
C.) Modified Boxplot - A replot without any outliers.

V. Variance and Standard Deviation

A.) Measures of spread of the data.
1.) Standard Deviation of a Population -

$$
\sigma=\sqrt{\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

2.) Standard Deviation of a Sample -

$$
s=\sqrt{\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

B.) Variance $-\sigma^{2}$ and s^{2}

On TI-83 - Stat - Calc - 1-Var Stats

VI. The Normal Distribution

Def- A distribution (usually associated with probability) which models the shape of a bell. A normal distribution follows the 68-95-99.7 rule.
This means that
68.2% of the data lies between $\mu \pm 1 \sigma$
95.4% of the data lies between $\mu \pm 2 \sigma$
99.7% of the data lies between $\mu \pm 3 \sigma$

