1-5: Parametric Equations and Inverses

Honors Precalculus
Mr. Gallo

Expressing Functions of Time

Suppose a balloon is inflated at a rate of $35 \mathrm{cu} . \mathrm{mm} . / \mathrm{sec}$.:
1.) Find the volume of the balloon after t seconds.

$$
V=35 t
$$

2.) When the volume is V , what is the radius?

$$
V=\frac{4}{3} \pi r^{3} \quad r=\sqrt[3]{\frac{3 V}{4 \pi}}
$$

3.) Write an equation for the radius of the balloon as a function of time.

$$
V=35 t \quad r=\sqrt[3]{\frac{3 V}{4 \pi}} \quad r=\sqrt[3]{\frac{105 t}{4 \pi}}
$$

Implicitly Defined Relations

- Relation

A set of ordered pairs

- Implicitly Defined Relations
- A relation whose equations defines two or more functions

$$
\begin{gathered}
x^{2}+y^{2}=9 \\
y^{2}=9-x^{2} \\
y= \pm \sqrt{9-x^{2}} \\
y=\sqrt{9-x^{2}} \quad y=-\sqrt{9-x^{2}}
\end{gathered}
$$

Parametric Relations

- Any relation where both elements in an ordered pair are defined in terms of time t.
- t is called the parameter.

Consider the following parametric relation:

$$
\begin{aligned}
& x=t+1 \\
& y=t^{2}+2 t
\end{aligned}
$$

Find (x, y) for $t=\{-3,-2,-1,0,1,2,3\}$

Consider the following parametric relation. Find (x, y) for $-3 \leq t \leq 2$.
$x=t+1$
$y=t^{2}+2 t$

Eliminating the Parameter

- In order to eliminate the parameter t, choose one of the equations and solve it for t.
- Substitute this expression into the other equation for t.

Eliminate the parameter for the following parametric relation.

$$
\begin{array}{ll}
x=t+1 & t=x-1 \\
y=t^{2}+2 t & y=(x-1)^{2}+2(x-1) \\
y=x^{2}-1
\end{array}
$$

Inverses

- The ordered pair (a, b) is in a relation iff (b, a) is in the inverse relation.
- One-to-One Function
${ }^{\circ}$ If f is a one-to-one function with domain D and range R, then the inverse function of f, $\operatorname{denoted} f^{1}$, is the function with domain R and range D.

$$
f^{-1}(b)=a \quad \operatorname{iff} f(a)=b
$$

- 1-to-1 functions are those functions whose inverses are also functions

Inverses

- Horizontal Line Test
- The inverse of a relation is a function iff each horizontal line intersects the graph of the original relation in at most one point.
- Inverse Reflection Principle
- The inverse of a function and the function are symmetric to the line $y=x$
- Inverse Composition Rule
- A function f is one-to-one with inverse function g iff
$f(g(x))=x$ and $g(f(x))=x$

Homework: p. 126 \#1-31 odd

