Summer Assignment

1) Your summer assignment text can be found here: http://www.nhvweb.net/nhhs/math/. This is a copy of your textbook for next year - become familiar with the format, style, etc. This is a review of algebra and it will be assumed that you understand these concepts and topics.
2) You should be capable of doing all of these problems, unless otherwise stated, WITHOUT A CALCULATOR. Any problems that require the use of a calculator will be "starred" on the assignment sheet. (example: 4^{*} means number 4 requires the use of a graphing calculator).
3) This assignment will be collected, checked by a notebook check, or both during the first days of school.
4) You should do these problems on separate paper, showing all work in a neat, organized manner. Graphs should be done accurately (scale and points labeled, etc.).
5) Helping each other to understand the concepts and material is acceptable and encouraged. Doing each other's problems and copying each other's work is NOT. Being penalized for cheating on the first assignment of the year is not a good way to start the course.
6) Calculators: You will be assigned a TI-83+ or TI-84+ when you return to school, unless you already have your own.

HONORS PRECALCULUS

Assignments Appendix, Chapter P, and Chapter 4 Review

Section	Page(s) \quad Problems
A. 1	$2,11,17,19,22,29,32,35,43,46,47,50,51,56,59,62,67,70,76$
A. 2	$4,6,7,12,18,20,23,26,31,36,40,47,52,53,56,61,67,71,74,83$
P. 1	$5,7,11,15,19,23,27,31,39,41,43,47-50,63$
P. 2	$9,13,21,27,37,43,45,51,55,67-69$
P. 3	$3,7,23,27,33,41,45,49,53$
P. 4	$5,9,13,17,21,25,35,43,47,55,59$
P. 5	$5,9,17,23,33^{*}, 34^{*}, 47,49,51^{*}, 53^{*}, 59^{*}, 61^{*}, 68-71$
P. 6	$3,7,11,15,19,23,27,31,35,39,43$
P. 7	$1-25$ odd, $\left.7-29^{*}\right), 33^{*}, 37 *, 39^{*}, 46-48($ All*)
Review	$8,11 b, 14,18,21,24,31,32,38,43,46,50,62,63,68^{*}, 71,74,75,80,81^{*}$
Ch. 4 Rev.	$1,4,8,13,16,19,22,23,30,32-34,38,41,42,51,52,63,77,79,82,101$

If you have any questions, please see one of us. Have fun!!

APPENDIX A. 1 Exercises

In Exercises 1-6, find the indicated real roots.
In Exercises 7-12, evaluate the expression without using a calculator.
2. Fourth roots of 81
11. $\sqrt[3]{-\frac{64}{27}}$

In Exercises 13-22, use a calculator to evaluate the expression.
In Exercises 27-36, simplify by removing factors from the radicand.
17. $81^{3 / 2}$
19. $32^{-2 / 5}$
22. $\left(-\frac{125}{64}\right)^{-1 / 3}$
29. $\sqrt[3]{-250}$
32. $\sqrt[3]{-27 x^{3} y^{6}}$
35. $\sqrt[5]{96 x^{10}}$

In Exercises 43-46, convert to exponential form.
In Exercises 47-50, convert to radical form.
43. $\sqrt[3]{(a+2 b)^{2}}$
46. $x y \sqrt[4]{x y^{3}}$
47. $a^{3 / 4} b^{1 / 4}$
50. $(x y)^{-3 / 4}$

In Exercises 51-56, write using a single radical.
In Exercises 57-64, simplify the exponential expression.
51. $\sqrt{\sqrt{2 x}}$
56. $\sqrt{a} \sqrt[3]{a^{2}}$
59. $\left(a^{5 / 3} b^{3 / 4}\right)\left(3 a^{1 / 3} b^{5 / 4}\right)$
62. $\frac{\left(p^{2} q^{4}\right)^{1 / 2}}{\left(27 q^{3} p^{6}\right)^{1 / 3}}$

In Exercises 65-74, simplify the radical expression.
In Exercises 75-82, replace \bigcirc with $<,=$, or $>$ to make a true statement.
67. $\sqrt[4]{\frac{3 x^{8} y^{2}}{8 x^{2}}} \quad$ 70. $\sqrt[5]{9 a b^{6}} \cdot \sqrt[5]{27 a^{2} b^{-1}}$
76. $\sqrt{4}+\sqrt{9} \bigcirc \sqrt{4+9}$

APPENDIX A. 2 Exercises

In Exercises 1-4, write the polynomial in standard form and state its degree.
4. $x^{2}-x^{4}+x-3$
6. $\frac{2 x-4}{x}$
7. $\left(x^{2}+x+1\right)^{2}$

In Exercises 9-18, simplify the expression. Write your answer in standard form.
12. $-\left(y^{2}+2 y-3\right)+\left(5 y^{2}+3 y+4\right)$
18. $\left(1-x^{2}+x^{4}\right)(2 x)$

In Exercises 19-40, expand the product.
20. $(2 x+3)(4 x+1)$
23. $(3 x-y)(3 x+y)$
26. $(x-1)^{3}$
31. $\left(x^{2}-2 x+3\right)(x+4)$
36. $\left(x^{1 / 2}-y^{1 / 2}\right)\left(x^{1 / 2}+y^{1 / 2}\right)$
40. $(x+1)\left(x^{2}-x+1\right)$

In Exercises 45-48, factor the difference of two squares.
47. $64-25 y^{2}$

In Exercises 53-58, factor the sum or difference of two cubes.
53. $y^{3}-8$
56. $64 z^{3}+27$
61. $z^{2}-5 z-24$
67. $6 x^{2}+11 x y-10 y^{2}$

In Exercises 69-74, factor by grouping.
71. $x^{6}-3 x^{4}+x^{2}-3$
74. $3 u w+12 u z-2 v w-8 v z$

In Exercises 75-90, factor completely.
83. $2(5 x+1)^{2}-18$

SECTION P. 1 Exercises

Exercise numbers with a gray background indicate problems that the authors have designed to be solved without a calculator.
In Exercises 5-10, describe and graph the interval of real numbers.
5. $x \leq 2$
7. $(-\infty, 7)$

In Exercises 17-22, use interval notation to describe the interval of real numbers.

In Exercises 29-32, convert to inequality notation. Find the endpoints and state whether the interval is bounded or unbounded and its type.
31. $(-\infty, 5)$

In Exercises 41 and 42, find the additive inverse of the number.
41. $6-\pi$

In Exercises 47-52, simplify the expression. Assume that the variables in the denominators are nonzero.
47. $\frac{x^{4} y^{3}}{x^{2} y^{5}}$
48. $\frac{\left(3 x^{2}\right)^{2} y^{4}}{3 y^{2}}$
49. $\left(\frac{4}{x^{2}}\right)^{2}$
50. $\left(\frac{2}{x y}\right)^{-3}$
43. -5^{2}
.

In Exercises 63 and 64, use scientific notation to simplify.
63. $\frac{\left(1.3 \times 10^{-7}\right)\left(2.4 \times 10^{8}\right)}{1.3 \times 10^{9}}$ without using a calculator

In Exercises 11-16, use an inequality to describe the interval of real numbers.
11. $[-1,1)$
15. x is between -1 and 2 .

In Exercises 23-28, use words to describe the interval of real numbers.
23. $4<x \leq 9$
26. $(-5,7)$

In Exercises 37-40, use the distributive property to write the factored form or the expanded form of the given expression.
39. $a x^{2}+d x^{2}$

In Exercises 43 and 44, identify the base of the exponential expression.
.

In Exercises 67-69, let $P(a, b)$ be a point in the first quadrant.
67. Find the coordinates of the point Q in the fourth quadrant so that the x-axis is the perpendicular bisector of $P Q$.
68. Find the coordinates of the point Q in the second quadrant so that the y-axis is the perpendicular bisector of $P Q$.
69. Find the coordinates of the point Q in the third quadrant so that the origin is the midpoint of the segment $P Q$.

SECTION P. 3 Exercises

Exercise numbers with a gray background indicate problems that the authors have designed to be solved without a calculator.

In Exercises 1-4, which values of x are solutions of the equation?
In Exercises 5-10, determine whether the equation is linear in x.
3. $\sqrt{1-x^{2}}+2=3$
(a) $x=-2$
(b) $x=0$
(c) $x=2$
7. $x+3=x-5$

In Exercises 11-24, solve the equation without using a calculator.
23. $2(3-4 z)-5(2 z+3)=z-17$

In Exercises 25-28, solve the equation. Support your answer with a calculator.
27. $\frac{t+5}{8}-\frac{t-2}{2}=\frac{1}{3}$

In Exercises 31-34, which values of x are solutions of the inequality?
In Exercises 35-42, solve the inequality, and draw a number line graph of the solution set.
33. $-1<4 x-1 \leq 11$
(a) $x=0$
(b) $x=2$
(c) $x=3$
41. $2(5-3 x)+3(2 x-1) \leq 2 x+1$

In Exercises 43-54, solve the inequality.
45. $4 \geq \frac{2 y-5}{3} \geq-2$
49. $\frac{x-5}{4}+\frac{3-2 x}{3}<-2$
53. $\frac{1}{2}(x-4)-2 x \leq 5(3-x)$

SECTION P. 4 Exercises

Exercise numbers with a gray background indicate problems that the authors have designed to be solved without a calculator.

In Exercises 3-6, find the slope of the line through the pair of points.
5. $(-2,-5)$ and $(-1,3)$

In Exercises 7-10, find the value of x or y so that the line through the pair of points has the given slope.
9. $(-3,-5)$ and $(4, y) \quad m=3$

In Exercises 11-14, find a point-slope form equation for the line through the point with given slope.

In Exercises 15-20, find a general form equation for the line through the pair of points.

Point Slope

11. $(1,4) \quad m=2$
12. $(5,-4) \quad m=-2$
13. $(1,-3)$ and $(5,-3)$

In Exercises 21-26, find a slope-intercept form equation for the line.
21. The line through $(0,5)$ with slope $m=-3$ 25. The line $2 x+5 y=12$

In Exercises 41-44, (a) find an equation for the line passing through the point and parallel to the given line, and (b) find an equation for the line passing through the point and perpendicular to the given line. Support your work graphically.

In Exercises 33-36, find the value of x and the value of y for which $(x, 14)$ and $(18, y)$ are points on the graph.
35. $3 x+4 y=26$
47. Navigation A commercial jet airplane climbs at takeoff with slope $m=3 / 8$. How far in the horizontal direction will the airplane fly to reach an altitude of $12,000 \mathrm{ft}$ above the takeoff point?

In Exercises 55 and 56, determine a so that the line segments $A B$ and
$C D$ are parallel.
55.

SECTION P. 5 Exercises

In Exercises 1-6, solve the equation graphically by finding x-intercepts. Confirm by using factoring to solve the equation.

$$
\text { 5. } x(3 x-7)=6
$$

59. Writing to Learn Perpendicular Lines

(a) Is it possible for two lines with positive slopes to be perpendicular? Explain.
(b) Is it possible for two lines with negative slopes to be perpendicular? Explain.

In Exercises 7-12, solve the equation by extracting square roots.
9. $3(x+4)^{2}=8$

In Exercises 13-18, solve the equation by completing the square. In Exercises 19-24, solve the equation using the quadratic formula.
17. $2 x^{2}-7 x+9=(x-3)(x+1)+3 x$
23. $x(x+5)=12$

In Exercises 29-34, solve the equation graphically by finding x-intercepts.
33. $x^{2}+4=4 x$
34. $x^{2}+2 x=-2$
59. Size of a Soccer Field Several of the World Cup '94 soccer matches were played in Stanford University's stadium in Menlo Park, California. The field is 30 yd longer than it is wide, and the area of the field is $8800 \mathrm{yd}^{2}$. What are the dimensions of this soccer field?
68. Deriving the Quadratic Formula Follow these steps to use completing the square to solve $a x^{2}+b x+c=0$, $a \neq 0$.
(a) Subtract c from both sides of the original equation and divide both sides of the resulting equation by a to obtain

$$
x^{2}+\frac{b}{a} x=-\frac{c}{a} .
$$

(b) Add the square of one-half of the coefficient of x in (a) to both sides and simplify to obtain

$$
\left(x+\frac{b}{2 a}\right)^{2}=\frac{b^{2}-4 a c}{4 a^{2}}
$$

(c) Extract square roots in (b) and solve for x to obtain the quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

70. Sums and Products of Solutions of
$a x^{2}+b x+c=0, a \neq 0$ Suppose that $b^{2}-4 a c>0$.
(a) Show that the sum of the two solutions of this equation is $-b / a$.
(b) Show that the product of the two solutions of this equation is c / a.

SECTION P. 6 Exercises

Exercise numbers with a gray background indicate problems that the authors have designed to be solved without a calculator.

In Exercises 1-8, write the sum or difference in the standard form $a+b i$ without using a calculator.
3. $(7-3 i)+(6-i)$
7. $\left(i^{2}+3\right)-\left(7+i^{3}\right)$

In Exercises 47-56, use a method of your choice to solve the equation.
47. $x^{2}+x-2=0$
49. $|2 x-1|=5$
51. $x^{3}+4 x^{2}-3 x-2=0$
53. $\left|x^{2}+4 x-1\right|=7$
61. Finding the Dimensions of a Norman Window A Norman window has the shape of a square with a semicircle mounted on it. Find the width of the window if the total area of the square and the semicircle is to be $200 \mathrm{ft}^{2}$.

69. Finding Number of Solutions Consider the equation $\left|x^{2}-4\right|=c$.
(a) Find a value of c for which this equation has four solutions. (There are many such values.)
(b) Find a value of c for which this equation has three solutions. (There is only one such value.)
(c) Find a value of c for which this equation has two solutions. (There are many such values.)
(d) Find a value of c for which this equation has no solutions. (There are many such values.)
(e) Writing to Learn Are there any other possible numbers of solutions of this equation? Explain.
71. Exercise 70 Continued The equation
$2 x^{2}+b x+c=0$ has two solutions x_{1} and x_{2}. If
$x_{1}+x_{2}=5$ and $x_{1} \cdot x_{2}=3$, find the two solutions.

In Exercises 9-16, write the product in standard form without using a calculator.

$$
\text { 11. }(1-4 i)(3-2 i) \quad \text { 15. }(-3-4 i)(1+2 i)
$$

In Exercises 17-20, write the expression in the form $b i$, where b is a real number.
19. $\sqrt{-3}$

In Exercises 25-28, write the complex number in standard form.
27. $\left(\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2} i\right)^{4}$

In Exercises 33-40, write the expression in standard form without using a calculator.
35. $\frac{2+i}{2-i} \quad$ 39. $\frac{(1-i)(2-i)}{1-2 i}$

In Exercises 21-24, find the real numbers x and y that make the equation truc.
23. $(5-2 i)-7=x-(3+y i)$

In Exercises 29-32, find the product of the complex number and its conjugate.

$$
\text { 31. }-3+4 i
$$

In Exercises 41-44, solve the equation.
43. $4 x^{2}-6 x+5=x+1$

SECTION P. 7 Exercises

In Exercises 1-8, solve the inequality algebraically. Write the solution in interval notation and draw its number line graph.

1. $|x+4| \geq 5$
2. $|x-3|<2$
3. $|4-3 x|-2<4$
4. $\left|\frac{x+2}{3}\right| \geq 3$

In Exercises 17-26, solve the inequality graphically.
17. $x^{2}-4 x<1$
19. $6 x^{2}-5 x-4>0$
21. $9 x^{2}+12 x-1 \geq 0$
23. $4 x^{2}+1>4 x$
25. $x^{2}-8 x+16<0$

In Exercises 27-30, solve the cubic inequality graphically.
27. $3 x^{3}-12 x+2 \geq 0$
29. $2 x^{3}+2 x>5$
37. Connecting Algebra and Geometry Consider the collection of all rectangles that have length 2 in . less than twice their width.
(a) Find the possible widths (in inches) of these rectangles if their perimeters are less than 200 in .
(b) Find the possible widths (in inches) of these rectangles if their areas are less than or equal to $1200 \mathrm{in.}^{2}$.

In Exercises 9-16, solve the inequality. Use algebra to solve the corresponding equation.
9. $2 x^{2}+17 x+21 \leq 0$
11. $2 x^{2}+7 x>15$
13. $2-5 x-3 x^{2}<0$
15. $x^{3}-x \geq 0$
33. Projectile Motion A projectile is launched straight up from ground level with an initial velocity of $256 \mathrm{ft} / \mathrm{sec}$.
(a) When will the projectile's height above ground be 768 ft ?
(b) When will the projectile's height above ground be at least 768 ft ?
(c) When will the projectile's height above ground be less than or equal to 768 ft ?
39. Cash-Flow Planning A company has current assets (cash, property, inventory, and accounts receivable) of $\$ 200,000$ and current liabilities (taxes, loans, and accounts payable) of $\$ 50,000$. How much can it borrow if it wants its ratio of assets to liabilities to be no less than 2? Assume the amount borrowed is added to both current assets and current liabilities.
46. Constructing a Box with No Top An open box is formed by cutting squares from the corners of a regular piece of cardboard (see figure) and folding up the flaps.
(a) What size corner squares should be cut to yield a box with a volume of $125 \mathrm{in}^{3}$?
(b) What size corner squares should be cut to yield a box with a volume more than 125 in. ${ }^{3}$?
(c) What size corner squares should be cut to yield a box with a volume of at most $125 \mathrm{in}^{3}$?

In Exercises 47 and 48, use a combination of algebraic and graphical techniques to solve the inequalities.
47. $\left|2 x^{2}+7 x-15\right|<10$ 48. $\left|2 x^{2}+3 x-20\right| \geq 10$

CHAPTER P Review Exercises

Exercise numbers with a gray background indicate problems that the authors have designed to be solved without a calculator.

In Exercises 7 and 8, write the number in scientific notation.
8. The diameter of a red blood corpuscle is about 0.000007 meter.
11. The data in Table P. 9 give the Fiscal 2009 final budget for some Department of Education programs. Using scientific notation and no calculator, write the amount in dollars for the programs.
(9) Table P. 9 Fiscal 2009 Budget

Program	Amount
Title 1 district grants	$\$ 14.5$ billion
Title 1 school improvement grants	$\$ 545.6$ million
IDEA (Individuals with Disabilities	$\$ 11.5$ billion
Education Act) state grants	
Teacher Incentive Fund	$\$ 97$ million
Head Start	$\$ 7.1$ billion
Source: U.S. Departments of Education, Health and Human Services as reported in Education Week, May $13,2009$.	

(a) Title 1 district grants
(b) Title 1 school improvement grants

In Exercises 13 and 14, find (a) the distance between the points and (b) the midpoint of the line segment determined by the points.
14. $(-4,3)$ and $(5,-1)$

In Exercises 17 and 18, find the standard form equation for the circle.
18. Center $(5,-3)$, radius 4
21. (a) Find the length of the sides of the triangle in the figure.
(b) Writing to Learn Show that the triangle is a right triangle.

24. Finding Slope Find the slope of the line through the points $(-1,-2)$ and $(4,-5)$.

In Exercises 27-32, find an equation in slope-intercept form for the line.
31. The line through $(2,-3)$ and parallel to the line $2 x+5 y=3$
32. The line through $(2,-3)$ and perpendicular to the line $2 x+5 y=3$

In Exercises 37-52, solve the equation algebraically without using a calculator.
38. $\frac{x-2}{3}+\frac{x+5}{2}=\frac{1}{3}$
43. $6 x^{2}+7 x=3$
46. $|4 x+1|=3$
50. $4 x^{2}-4 x+2=0$

In Exercises 61-72, solve the inequality.
62. $|2 x-5|<7$
63. $|3 x+4| \geq 2$
68. $4 x^{3}-9 x+2>0$
71. $4 x^{2}+12 x+9 \geq 0$

In Exercises 73-80, perform the indicated operation, and write the result in the standard form $a+b i$ without using a calculator.
74. $(5-7 i)-(3-2 i)$
75. $(1+2 i)(3-2 i)$
80. $\frac{2+3 i}{1-5 i}$
81. Projectile Motion A projectile is launched straight up from ground level with an initial velocity of $320 \mathrm{ft} / \mathrm{sec}$.
(a) When will the projectile's height above ground be 1538 ft ?
(b) When will the projectile's height above ground be at most 1538 ft ?
(c) When will the projectile's height above ground be greater than or equal to 1538 ft ?

CHAPTER 4 Review Exercises

Exercise numbers with a gray background indicate problems that the authors have designed to be solved without a calculator.

The collection of exercises marked in red could be used as a chapter test.

In Exercises 1-8, determine the quadrant of the terminal side of the angle in standard position. Convert degree measures to radians and radian measures to degrees.

1. $\frac{5 \pi}{2}$
2. -45°
3. $\frac{7 \pi}{10}$

In Exercises 11-16, the point is on the terminal side of an angle in standard position. Give the smallest positive angle measure in both degrees and radians.
13. $(-1, \sqrt{3})$
16. $(2,4)$

In Exercises 17-28, evaluate the expression exactly without a calculator.
19. $\tan \left(-135^{\circ}\right)$
22. $\csc \frac{2 \pi}{3}$
23. $\sec \left(-\frac{\pi}{3}\right)$

In Exercises 29-32, evaluate exactly all six trigonometric functions of the angle. Use reference triangles and not your calculator.
30. $\frac{19 \pi}{4}$
32. 420°
33. Find all six trigonometric functions of α in $\triangle A B C$.

34. Use a right triangle to determine the values of all trigonometric functions of θ, where $\cos \theta=5 / 7$.
38. Use a calculator in Radian mode to solve $\sin x=0.218$ if $0 \leq x \leq 2 \pi$.

In Exercises 39-44, solve the right $\triangle A B C$.

41. $\beta=48^{\circ}, a=7$
42. $\alpha=28^{\circ}, c=8$

In Exercises 49-52, point P is on the terminal side of angle θ. Evaluate the six trigonometric functions for θ.

In Exercises 61-66, state the amplitude, period, phase shift, domain, and range for the sinusoid.
51. $(-5,-3)$
52. $(4,9)$
52. $(4,9)$
63. $f(x)=1.5 \sin (2 x-\pi / 4)$

In Exercises 77-82, find the exact value of x without using a calculator.
77. $\sin x=0.5, \quad \pi / 2 \leq x \leq \pi$
79. $\tan x=-1, \quad 0 \leq x \leq \pi$
82. $\cot x=-\sqrt{3}, \quad 0 \leq x \leq \pi$
101. Height of Tree Dr. Thom Lawson standing on flat ground 62 ft from the base of a Douglas fir measures the angle of elevation to the top of the tree as $72^{\circ} 24^{\prime}$. What is the height of the tree?

